
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

COMPLEXITY MEASURE FOR THE PROTOTYPE
SYSTEM DESCRIPTION LANGUAGE (PSDL)

by

Joseph P. Dupont

June 2002

 Thesis Advisor: Valdis Berzins
 Co-Advisor: Michael R. Murrah

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Complexity Measure for the Prototype System
Description Language (PSDL)
6. AUTHOR(S) Joseph P. Dupont

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

We often misunderstand, ill define or improperly measure the complexity of software. Software complexity is
represented by the degree of complication of a system determined by such factors as control flow, information flow, the degree
of nesting, the types of data structures, and other system characteristics, such as unconventional architectures. However, a
common notion of software complexity fulfills a non-functional requirement, that of understandability. How well do we
understand the control flow, the data structure, etc?

Rapid prototyping is an excellent tool to define system requirements and decrease developmental risk. Software
complexity measured early (i.e., during prototyping), helps to minimize the complexity, which in turn helps to decrease the
developmental risk also. The Prototype System Description Language (PSDL) provides the necessary code to achieve rapid
prototyping. As a result, we have a need to accurately measure the complexity of PSDL.

15. NUMBER OF
PAGES

171

14. SUBJECT TERMS Complexity, Software Complexity, Software Complexity Measures,
Measurement Theory, Scale, Scale Type, PSDL, CAPS, PSDL Complexity

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

COMPLEXITY MEASURE FOR THE PROTOTYPE SYSTEM DESCRIPTION
LANGUAGE (PSDL)

Joseph P. Dupont
Major, United States Army

B.S. in Electrical Engineering, University of New Hampshire, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2002

Author: Joseph P. Dupont

Approved by: Valdis Berzins, Thesis Advisor

Michael R. Murrah, Co-Advisor

Luqi
Chair, Department of Software Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

We often misunderstand, ill define or improperly measure the complexity of

software. Software complexity is represented by the degree of complication of a system

determined by such factors as control flow, information flow, the degree of nesting, the

types of data structures, and other system characteristics, such as unconventional

architectures. However, a common notion of software complexity fulfills a non-

functional requirement, that of understandability. How well do we understand the control

flow, the data structure, etc?

Rapid prototyping is an excellent tool to define system requirements and decrease

developmental risk. Software complexity measured early (i.e., during prototyping), helps

to minimize the complexity, which in turn helps to decrease the developmental risk also.

The Prototype System Description Language (PSDL) provides the necessary code to

achieve rapid prototyping. As a result, we have a need to accurately measure the

complexity of PSDL.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. AREA OF RESEARCH ..1
B. RESEARCH QUESTIONS...1

1. Principal Research Question...1
2. Secondary Research Questions...1

C. DISCUSSION ...1
D. SCOPE OF THESIS ..2
E. METHODOLOGY ..3
F. ORGANIZATION ...3
G. BENEFIT OF THE STUDY ...4

II. SOFTWARE COMPLEXITY DEFINED ...5
A. OVERVIEW...5
B. A MODEL OF THE WORLD..5
C. COMPLEXITY MEASURES...6
D. THE ILL-DEFINITION..7
E. SUMMARY ..10

III. SOFTWARE COMPLEXITY MEASURES...13
A. OVERVIEW...13
B. MEASUREMENT THEORY ...13

1. Relations..15
2. Binary Operations..15
3. Theory of Software Complexity Measures16

C. SCALE / SCALE TYPE ..16
1. Explanation of Scale and Scale Type ...17
2. Scale Type for Software Complexity Measures19

D. AXIOMS OF SOFTWARE COMPLEXITY MEASURES.......................20
1. Axioms from Tsai, Lopez, Rodriguez and Volovik. [Ref. 14]22
2. Axioms by Weyuker [Ref. 14] ...23
3. McCabe Cyclomatic Complexity (MCC) Measure.........................25

E. CATEGORIES OF SOFTWARE COMPLEXITY MEASURES.............27
1. Categories by Zuse [Ref. 15] ...27
2. Categories by Henry and Kafura [Ref. 4]..28

F. SUMMARY ..29

IV. PSDL CHARACTERISTICS ...31
A. OVERVIEW...31
B. PSDL COMPUTATION MODEL ...31
C. PSDL COMPLEXITY...33
D. DECOMPOSITION AS A CHARACTERISTIC.......................................38
E. SUMMARY ..41

 viii

V. PSDL COMPLEXITY MEASURE..43
A. OVERVIEW...43
B. EARLY CONSIDERATIONS ..44
C. DEVELOPING THE COMPLEXITY MEASURE FOR PSDL...............46

1. Complexity and Hybrid Measures ...46
2. Complexity and Information Flow...47
3. Complexity and PSDL Properties ..48
4. Complexity and PSDL Weighting Factors52
5. The Weighting Tables..53
6. PSDL Complexity Measure...55

D. AN EXAMPLE OF THE COMPLEXITY MEASURE FOR PSDL56
E. SUMMARY ..59

VI. FUTURE RESEARCH AND CONSIDERATIONS...63

APPENDIX A. COMPLEXITY METRICS FOR DCAPS...67

APPENDIX B. PSDL AND THE AXIOMS OF CHAPTER III.....................................127

APPENDIX C. PSDL SOURCE FILE FOR AUTOPILOT CONTROL SYSTEM.....133

LIST OF REFERENCES..143

BIBLIOGRAPHY..145

GLOSSARY..147

INITIAL DISTRIBUTION LIST...153

 ix

LIST OF FIGURES

Figure 2.1. Program Complexity Using Java. ..8
Figure 2.2. LGC and MCC Plotted against LOC. “From [Ref. 2]”9
Figure 3.1. Empirical vs. Formal Relational System. “From [Ref. 14]”............................15
Figure 4.1. CAPS Dataflow Diagram of an Autopilot Control System.36
Figure 4.2. CAPS Dataflow Diagram of Fish Farm Control System I...............................37
Figure 4.3. CAPS Dataflow Diagram of Fish Farm Control System II.37
Figure 4.4. Decomposition of autopilot_software..39
Figure 4.5. Expanded Autopilot Control System. ..40
Figure 5.1. ZD-MIS Database. “From [Ref. 16]” ..44
Figure 5.2. Relationship of Fan_in and Fan_out. ...48
Figure 5.3. ZD-MIS Homepage. ..61
Figure 5.4. Selection Criteria Page of ZD-MIS..61
Figure 6.1. PSDL Syntax vs. Semantics...64

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 3.1. Scale Types. “After [Ref. 15]”...17
Table 3.2. Notation of Weyuker. “From [Ref. 14]”..24
Table 5.1. PSDL Properties...49
Table 5.2. Weighting for Operators, (ω)..53
Table 5.3. Weighting for Data Streams, (ε)...54
Table 5.4. Individual Weighting Factors. ...54
Table 5.5. Properties and Weights Associated with Autopilot Control System.57
Table 5.6. Calculated Complexities of Three Systems. ..59

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS

ADT Abstract Data Type

AO Atomic Operator

CAPS Computer Aided Prototyping System

CO Composite Operator

D Deadline

DF Dataflow

DSI Data Stream In

DSO Data Stream Out

EG Execution Guards

ES External System

FGC Fine Granular Complexity

ISC Internal Software Component

L Latency

LGC Large Granular Complexity

LOC Lines of Code

MCC McCabe’s Cyclomatic Complexity

MCP Minimum Calling Period

MET Maximum Execution Time

MRT Minimum Response Time

NL No Latency

NSS Non-State Stream

OO Object Oriented

P Period

PSDL Prototype System Description Language

PT Primitive Type

SLOC Source Lines of Code

SS State Stream

 xiv

TA Triggered by All

TS Triggered by Some

ZD-MIS Zuse/Drabe Measurement Information System

 xv

ACKNOWLEDGMENTS

Acknowledgements often go overlooked but enough cannot be said to and about

the people instrumental in writing and researching a thesis. I knew not what lay ahead as

I embarked on this mission. I am a better person for doing it, or at least a little bit more

educated.

I certainly have to thank my primary advisor, Major Michael Murrah who got me

interested in this topic early after my arrival to the Naval Postgraduate School. Without

the constant prodding to assist him in his dissertation research, I probably would still be

looking for a thesis topic. The list of support he provided is endless and a simple word of

thanks is not enough.

Secondly, multiple displays of encouragement were always available from Dr.

Mantak Shing and Prof. Richard Riehle, the two people who make the Software

Engineering Program first class. Dr. Shing with his never-ending knowledge of

Prototype System Description Language (PSDL) and Computer Aided Prototyping

System (CAPS) was always a constant source of reference and Prof. Riehle with his

never-ending knowledge of software engineering took the time to push me through this

demanding program.

I saved the best, for last. No words can express the gratitude I have towards my

wife, Kit. Through illness and caring for our children, she always ensured I had the time

I needed for my studies. Without her, this would not have been possible.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. AREA OF RESEARCH

This thesis provides an alternative measure of software complexity for the

Prototype System Description Language (PSDL). Alternative complexity measures

provide direct application for improvement to Dr. Juan Carlos Nogueira’s [Ref. 10]

Software Risk Model, and to Major Michael Murrah’s dissertation research, a Modified

Risk Model.

B. RESEARCH QUESTIONS

1. Principal Research Question

Does the software complexity measure (Large Granular Complexity and Fine

Granular Complexity), as implemented in Nogueira’s Software Risk Model [Ref. 10],

accurately reflect the complexity of PSDL code?

2. Secondary Research Questions

• What is the definition of software complexity and how is it applicable to
PSDL?

• Can the software complexity of a project be accurately determined during
the prototyping stage?

• Is there a hybrid measure that more accurately represents the software
complexity of PSDL code?

• What is a measurement?

C. DISCUSSION

Software has forever changed our lives. It is very difficult to find any system,

mechanical, electrical or otherwise that does not run on software. Software has become

an integral part of everything we see or do. Often times we are not even aware of the

software because we cannot interact with it – embedded software. Many times the

software is critical to the safety of the system – safety critical software. Other times the

software must perform under precise timing constraints and work concurrently with other

functions – real time software. Moreover, we no longer just build single systems that run

on software; we build systems of systems. No longer, are we concerned with the

 2

software controlling a particular system; we have to be concerned with how system

independent software interacts with other system independent software.

Our world is now defined by ever-increasing complex systems. By complex, we

mean multifaceted, not difficult. System engineering helps us to simplify multifaceted

systems ensuring a level of understanding. Decades ago it would not have been possible

to build some of the systems of today. Technology did not allow it, and our processes did

not allow it. Complex, then, meant difficult. We have difficult systems to build today,

too, because of technology and our processes. They will not be complex (i.e., difficult)

tomorrow, or will they still be complex (i.e., multifaceted)?

Whatever definition we choose, all software has inherent complexity. Be it

multifaceted like a composition of many programs or be it difficult like a new

programming language, complexity will always mean the unlikelihood of understanding.

System engineering helps to minimize the complexity of multifaceted systems. What do

we have to minimize the complexity of systems that are difficult?

Being able to produce a reliable measure of the eventual complexity of the

software early in the design phase (i.e., during prototyping) is of considerable interest.

Early (rather than later) in the development cycle, a software designer has the greatest

flexibility in modifying the software design to achieve desired program objectives of

cost, time, and functionality. Thus, investigating how and when to obtain early measures

of complexity is of significant importance. Keeping complexity small can guarantee less

risk, less error, and better maintainability.

D. SCOPE OF THESIS

The scope of the thesis will include the following:

• Examine some existing complexity measures and determine their
applicability when applied to the Computer Aided Prototyping System
(CAPS) environment.

• Exercise analyzer tools that will calculate side-by-side complexity
measures (i.e. Nogueira’s Large Grain Complexity, McCabe’s Cyclomatic
Complexity).

• Compare the various complexity measures of several available PSDL
models.

 3

• Derive conclusions regarding what complexity measures are best suited
for the CAPS environment to include a possible hybrid measure.

E. METHODOLOGY

The methodology used in this research consists of the following steps:

• Exercise analyzer tools to parse PSDL code to facilitate comparison and
analysis of various complexity measures.

• Conduct statistical analysis on the various results.

• Conduct a literature search of books, magazine articles, World Wide Web,
and other library information resources regarding the definitions and
measures of software complexity. Identify the ideal characteristics of a
complexity measure for PSDL.

• Draw any conclusions on the various measures.

• Derive a PSDL complexity measure that is an accurate representation of
the complexity of the final software system.

F. ORGANIZATION

This thesis is written for two readers: those who are familiar with CAPS and

PSDL and those who are not. For those unfamiliar, it is recommended the reader first go

through Appendix A. Although Appendix A is referenced frequently throughout the

thesis, in its entirety it provides a comprehensive understanding of the CAPS design

process and initial complexity analysis.

With an understanding of CAPS and PSDL, a reader can then go straight to

Chapter V for the complexity measurement without having to read Chapters II - IV. For

those who wish to gain an appreciation on how the measurement was derived, the reader

should take the time to go through each chapter and appendix. The remainder of this

thesis is divided into the following:

• Chapter II: Software Complexity Defined. Chapter II provides a definition
of software complexity. It explores the importance of measuring software
complexity.

• Chapter III: Software Complexity Measures. Chapter III provides a
definition of existing software complexity measures. It explores the
history and theory of measurements and important axioms related to
software complexity measures.

• Chapter IV: PSDL Characteristics. Chapter IV provides a definition of
PSDL and important factors necessary in measuring its complexity. It
explores the semantics behind PSDL.

 4

• Chapter V: PSDL Complexity Measure. Chapter V provides a definition
of the PSDL Complexity Measure. It explores the development of the
measure, through hybrids, information flow, PSDL properties and
important weighting factors associated with those properties.

• Chapter VI: Future Research and Considerations. Chapter VI provides
thoughts for future research and considerations that could not be part of
this thesis due to timing constraints. Some of these are simply my own
ideas others are questions that surfaced toward the end of my work.

• Appendix A: Complexity Metrics for DCAPS. Appendix A is also listed
as Ref. 2 in the List of References. It is the final report for the SW 4510
class. Its importance is it became the catalyst that launched this thesis. It
is the initial research and analysis conducted into deriving a complexity
measure for PSDL.

• Appendix B: PSDL and the Axioms of Chapter III. Appendix B contains
a reference of each axiom from Chapter III and its relation to PSDL. This
appendix can be used after a sufficient understanding of CAPS and PSDL
has been achieved.

• Appendix C: PSDL Source File for Autopilot Control System. Appendix
C contains source code used to calculate the complexity of the Autopilot
Control System. This system was used as the example in Chapter V.

G. BENEFIT OF THE STUDY

CAPS is an evolving prototyping system built and maintained by students and

faculty of the Naval Postgraduate School. Accurately capturing the complexity of its

generated PSDL code will provide critical insight into further development of both CAPS

and Software Risk Models. This level of detail provides benefit to the Department of

Defense, program managers of software projects as well as their developers.

 5

II. SOFTWARE COMPLEXITY DEFINED

A. OVERVIEW

Providing clarity to software complexity is complex in and of itself because

software is inherently complex (i.e., difficult, vague). Furthermore, the definition of

complexity is inherently complex (i.e., diverse, compound). Therefore providing clarity

to software complexity is difficult, vague, diverse and compound, a complex complexity!

The term, complexity, is an abstraction, a polymorphism that only needs

specification to understand its semantics and quell its ambiguity. To establish

specification of software complexity, we must consider what software is, the value and

types of software measures, and finally explore the multiple ways to represent software

complexity.

B. A MODEL OF THE WORLD

The creation of software is difficult primarily because software is
essentially a model of the real or conceptual world. Any such world is
filled with a complexity that exceeds the capabilities of any one person to
completely comprehend at one time. [Ref. 1]

Other engineering disciplines sometimes refute software engineering because the

engineering of software follows no widely accepted methods or practices. Software,

being intangible and a model of the world, exists outside the physical world where most

engineering sciences lie. One of the most important arguments refuting engineering

status is the lack of being able to measure software. After all, how do you measure

something that is intangible? What do you measure? A major difference between a

“well developed” science such as physics and some of the less “well developed” sciences

such as psychology or sociology is the degree to which things are measured [Ref. 12].

The physicist, Lord Kelvin (1824-1904), is quoted as saying:

When you can measure what you are speaking about, and express it into
numbers, you know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meager
and unsatisfactory kind.

 6

In software development, it is important to be able to measure the complexity of

software to minimize risk in the development process. Risk minimization occurs because

the decisions made from the quantitative understanding of the program help achieve

better quality. However, how do you measure if one program is more complex or equally

complex to another? What is the complexity of a program? What does the term

complexity mean in general?

C. COMPLEXITY MEASURES

All software programs have inherent complexity, the more complex the program,

the greater likelihood of misunderstanding. For the developer this means a greater

chance of error during development, integration or maintenance. For the user it means

greater chance of human error during installation or use. For all stakeholders, it means

greater risk. Complexity, therefore, personifies several definitions.

Thomas McCabe [Ref. 7] developed McCabe Cyclomatic Complexity (MCC),

which uses the number of independent paths through a program to describe complexity.

Maurice Halstead [Ref. 3] considers unique operators and operands. Literal definitions

include a simple level of understanding or readability of the code and others consider the

total Lines of Code (LOC) or “Software Size”. Function Point analysis uses a weighting

system of the number of inputs, outputs, queries, files, and system interfaces required in

the program. In fact, research shows that there are as many as 100 different ways to

measure complexity [Ref. 14], each with its own interpretation. With so many

complexity measures to choose from, the question becomes what is the appropriate

measure for your situation, or your code.

Considering “Software Size” alone yields numerous definitions – for instance,

Whitmire [Ref. 13] as paraphrased by Pressman [Ref. 11] identifies four different views

regarding what size means in Object Oriented programming:

Size is defined in terms of four views: population, volume, length, and
functionality. Population is measured by taking a static count of object
oriented (OO) entities such as classes or operations. Volume measures are
identical to population measures but are collected dynamically, -- at a
given instant of time. Length is a measure of a chain of interconnected
design elements (e.g., the depth of an inheritance tree is a measure of

 7

length). Functionality metrics provide an indirect indication of the value
delivered to the customer by an OO application.

While software size and complexity have been extensively researched, there are

still no conclusive software complexity measures that can be captured very early in the

software development lifecycle (perhaps during prototyping) that produce reliable

estimates of the eventual complexity of the delivered software. Popular methods, such as

Function Point analysis and Halstead’s Complexity measure have several weaknesses

because they were developed in the seventies and do not reflect the intricacies of OO

programming.

Dr. Nogueira [Ref. 10] performed one initial investigation of an early calculable

complexity measure for the PSDL). He used this measure as an input to his software risk

model. However, questions remain about this measure because there limited

documentation exists explaining the logic behind his choice.

Being able to produce a reliable measure of the eventual complexity of the

software early in the software’s design is of considerable interest. Early rather than later,

in the development cycle, a software designer has the greatest flexibility in modifying the

software design to achieve desired program objectives of cost, time, and functionality.

Thus, investigating how and when to obtain early measures of complexity is of

significant importance. Whatever the definition, keeping complexity manageable can

guarantee less risk, less error, and better maintainability.

D. THE ILL-DEFINITION

To illustrate the ill definition of complexity I will use two examples. Figure 2.1

provides the first example using extracts of Java code.

 8

P1 P3

1. for(int i=1, i <= 100, i ++) 1. int i=1;
2. { 2. for (i <=100)
3. sum += i; 3. {
4. } 4. sum = sum + i;
 5. i = i + 1;
 6. }

P2 P4

1. for(int i=1, i <= 100, i ++) 1. int i = 100;
2. { 2. int sum = i * ((i + 1)/2);
3. sum = sum + i;
4. }

Figure 2.1. Program Complexity Using Java.

Intuitively you can easily see that P1, P2 and P3 add all the numbers 1 - 100

recursively. Syntactically there is a little difference but the semantics are exactly the

same. The syntax of P4 is different, though. However, its semantics is also the same as

the other three. Certainly is not as intuitive by looking at the code, unless you have a

good math background. One, therefore, can say that P4 is the most complex because it is

more difficult to understand or is not readily understandable by looking at the code. You

can add comments to P4 to make it more understandable for another programmer to

maintain the code. Except, depending on an individual’s viewpoint, commented code

may add to instead of detract from the total complexity because you are adding more

lines to it, more information.

When LOC defines complexity, which usually refers to logical source lines of

code, P3 is the most complex leaving P1, P2 and P4 equivalent (i.e., P3 > P1 = P2 = P4).

Nevertheless, my viewpoint tells me P3 is not the most complex because I understand

what it is doing. Quite honestly, I could argue that P3 is the least complex. P3 lays out

all the instructions, nicely, making the code more easily read and understood without

 9

comments. Therefore, without specifying a definition of complexity you cannot

determine the complexity. It becomes important to understand the context in which we

speak of complexity.

The second example is a quick glance at the potential problem of trying to define

the complexity of PSDL. If complexity had a simple definition there should be

correlation between the many different measures. In other words, a one to one

relationship should exist. A program should show signs of being more complex using

any measure. Although, Figure 2.1 briefly showed this is not the case. Without doubt, if

all measures were created equal, you should not expect one measure to show greater

complexity and another to show a lesser degree of complexity. In Figure 2.2 a number of

PSDL programs were analyzed using LOC, MCC and Noguiera’s Large Granular

Complexity (LGC) measures.

y = 0.012x + 5.5328

y = 0.0218x + 22.106

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

0 100 200 300 400 500 600 700 800

Lines of Code

C
o

m
p

le
xi

ty LGC

MCC

Linear (MCC)

Linear (LGC)

Figure 2.2. LGC and MCC Plotted against LOC. “From [Ref. 2]”

Figure 2.2 is a chart of three different software measures that can be used to

calculate software complexity. The detail of these measures is provided in Appendix A,

 10

[Ref. 2] and is not needed here to discuss their relationship. LGC and MCC are each

plotted on the y-axis against the third measure, LOC, on the x-axis. LGC is the top set of

points and MCC, the bottom set of points. LOC in PSDL is uncommented source lines of

code.

The trend lines in Figure 2.2 give you the impression that there is a linear

relationship between lines of code and the complexity measures. Nogueira’s LGC

measure and MCC measure increase as LOC increases. However, we have already

shown in Figure 2.1 where LOC may not accurately represent complexity so this may be

a flawed theory. Furthermore, because the slope of the MCC trend line (i.e., 0.012) is

roughly one half that of LGC (i.e., 0.0218), we see that MCC is more independent of

LOC than that of LGC. The similar peaks and valleys of each LGC and MCC point show

a relationship between themselves. Yet, there are some instances where the LGC

increased and the MCC did not. The degree of change also does not match up.

The importance of these findings is two-fold: complexity measures do differ and

the choice of measure is important. Once the proper measure is chosen, you must

understand the meaning behind the numbers. A number by itself has no meaning.

A measurement based on some known formal standard has meaning. To say a

board is three feet long presents a picture in our mind of a yardstick and a good idea of

the actual length. But to say the board is a meter long, for some, presents no image and

no understanding of its meaning. More specifically, in terms of software, twenty years

ago to say a program had 100,000 lines of code would conjure up images of a large,

complex program that took many man-months to develop. Today that measurement is

indicative of a fairly small program. So then, how do we choose the proper complexity

measure that has and will have meaning?

E. SUMMARY

Software complexity takes on many different meanings. It truly is “In the eyes of

the beholder.” Because we all see complexity differently, the past three decades has

given us well over 100 ways to measure the complexity of the software; each has its own

interpretation. Most of the earliest complexity measures considered software size, either

as volume or as LOC, as the most accurate way to measure complexity of software.

 11

Unfortunately, we have several methods of determining that size. We can count

independent paths through the code, unique operators and operands, or we can simply

count the lines of code? On the other hand, if we decide to count lines of code we need

to define what is actually counted (i.e., comments, functions, operations, etc).

In determining how to measure software complexity, some decisions have to be

made beforehand. The independent evaluator must understand complexity’s meaning.

Understanding is best, when coupled by intuition. There has to be a precise definition

that specifies the conditions of the measurement. The choice of programming language

most certainly is a factor and more specifically the structure of the language. Lastly, it

must be decided when in the lifecycle of software development the complexity will be

measured.

Complexity measured early and minimized will surely benefit the program by

minimizing the risk involved. It is unlikely there will ever be a single way to measure

complexity, but a set of rules upon which to make those decisions is attainable.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. SOFTWARE COMPLEXITY MEASURES

A. OVERVIEW

At the start of the 17th century, there was no way to quantify heat, hence, no way

to measure temperature. Rules upon which to base the proper method of measuring

encompass measurement theory, the ideas behind scales and scale types, and accepted

axioms. One accepted axiom, regarding temperature, was that something always felt

warm or cool. This axiom is fairly pragmatic but nonetheless the assumption had to be

made to continue.

A temperature scale could not be arranged until minimum and maximum numbers

were given to the temperature of some physical object. Those numbers then had intuitive

significance and value. For instance, a number could be placed on the freezing and

boiling points of water, because they are easily observed. In degrees Celsius the scale

became 0° and 100°. In terms of temperature, these numbers have new meaning, and can

be mapped back to an intuitive understanding of temperature, (i.e., cold and hot). The

scale type defines the relationship of any two numbers within the scale and the mapping

of values to an intuitive understanding is covered under measurement theory.

In the 20th century we found ourselves trying to quantify software complexity and

therefore needed a way to measure it. Many measures have been derived because of and

categorized by, certain program conditions, expectations and intuitive understandings.

Software complexity measures are not exempt from the rules of measurement;

consequently, it is important to understand those rules in detail and the categories in

which they are placed.

B. MEASUREMENT THEORY

Measurements have empirical and formal relationships. In the world of empirical

relationships, we must establish certain axioms for measurement to have meaning. These

axioms are subjective, based on individual judgment, preferences or reactions. Put

another way, for measurements to be effective there has to be an intuitive meaning. All

axioms follow the laws of symmetry and transitivity, presented here as Axioms 3.1 and

3.2:

 14

Axiom 3.1: If you prefer a to b, you do not prefer b to a.

Axiom 3.2: If you do not prefer a to b, and do not prefer b to c, then you do not
prefer a to c.

These axioms can be prescriptive, based on some conditions of rationality, or

descriptive based on some conditions of behavior that allow the measurement to take

place. [Ref. 14]

Using a wooden board as an example, to say the board is three feet long is

descriptive since we have an understanding of the length of a foot (i.e., a ruler) and a yard

(i.e., a yardstick). It is prescriptive in the sense that length is a widely accepted

measurement for something such as a board. Any rational person would not provide you

a measurement of 10 lbs when speaking of a board. It would have no meaning especially

when using that board on some construction project.

Formal relationships base measurements on widely accepted scales to have an

intuitive meaning. A yard means 3 feet; 12 inches means a foot and we understand that 8

feet is the standard length of boards. Problems occur in measurement when the scale is

unknown, such as the metric system that the U.S. has not fully adopted. Building a

formal relational system is the process of putting numeric value to an empirical relation.

To illustrate empirical relations versus formal relations we will use Figure 3.1.

 15

Empirical Relational System Formal Relational System

Wooden Boards ¡ Real Numbers

Relation: Relation:
equal or longer than: •≥ equal or greater than: ≥
 a
 some measurement: µ

 b

b •≥ a ⇔ µ(b) ≥ µ(a)

Binary Operation: Binary Operation:

Concatenation or Composition (°) Addition (+)

 a b

a° b = c ⇔ µ(c) = µ(a) + µ(b)

Figure 3.1. Empirical vs. Formal Relational System. “From [Ref. 14]”

1. Relations

In Figure 3.1, the empirical relationship of two wooden boards is interpreted as

one board being equal or longer than another, using the symbol •≥. Whereas the formal

relationship is one board being equal or greater than another, using the symbol ≥. Hence

b is longer than a if and only if the measurement of b (i.e., µ(b)) is greater than the

measurement of a (i.e., µ(a)).

2. Binary Operations

A binary operation in empirical terms is represented by concatenation or

composition. It simply means when b is placed end to end with a, we say that board b is

concatenated to board a and that some new board c is the composition of board a and

board b (i.e., a° b = c). On the other hand, in formal terms that binary operation is

represented as the sum of two elements, a + b. As a result, c is the composition of a and

 16

b if and only if the measurement of c (i.e., µ(c)) equals the sum of measurement a and

measurement b (i.e., µ(a) + µ(b)).

This is a fairly explicit explanation to a very simple perception; the formal

relationship has intuitive meaning and the empirical relationship maps to some formal

measurement. Zuse [Ref. 15] calls this mapping a homomorphism. We must have a

homomorphism to have a good measure and for a homomorphism to exist there must be

an injective relationship between empirical and formal relational systems. With boards,

we know the empirical relation is length; intuitively we know the meaning of length. The

length of boards can be measured and the value of the measurement has one and only one

meaning.

3. Theory of Software Complexity Measures

Measuring software complexity is somewhat more difficult because of an

unknown empirical relation? When there is no intuitive understanding of complexity we

cannot say reliably that one program is more or equally complex to another. Moreover,

without an empirical relation we cannot intuitively predict that one program is more

complex than another. Determining this empirical relation lies heavily with the

individual trying to interpret the complexity because there is no standard interpretation of

complexity, as there is with length. As long as the individual’s understanding follows the

axioms of measurement and accepted conditions of complexity, the measurement will

hold true.

Some people wish to say complexity can be measured using LOC, which is

nothing more than measuring the length of a program. If the length of a program defines

an intuitive understanding of complexity, then it is valid. However, in Chapter II, we

showed how there are some inaccuracies with this measurement based on other

interpretations of complexity.

C. SCALE / SCALE TYPE

Before an ability to measure temperature existed, a scale, scale type and accepted

axioms had to be established, not to mention having a tool to actually measure it.

Axioms fell under the pretext that something felt warmer or cooler, that some things

always had the same temperature, (i.e., freezing and boiling points of water, and the

 17

temperature of humans) and that there should be a way to measure the difference with

standard values. We are in a similar position today trying to measure software

complexity. Complexity measures, too, must have a defined scale, scale type, and

axioms to provide us with useful data. It is important to distinguish between scale and

scale type.

1. Explanation of Scale and Scale Type

Zuse [Ref. 15] indicates a scale is a homomorphic mapping; the formal relation

must correlate with the empirical understanding of the measure. Scale types are defined

by admissible transformations, in other words, what operations or deductions do we allow

on the scale. There is a classification of scales according to their admissible

transformations. The common hierarchy of scales is: the nominal scale with any one to

one transformation, the ordinal scale with a strictly increasing transformation

() , 0g x b a= = , the interval scale with the transformation () , 0g x ax b a= + > , the

ratio scale with () , 0g x ax a= > , and the highest on the hierarchy being the absolute

scale with admissible transformation ()g x x= ; that means that no admissible

transformations of x can occur. [Ref. 15]

Knowing the proper scale type upfront allows you to manipulate the numbers

correctly and provide meaningful data. It allows you to properly scale the

measurements. Choosing the proper scale type is a subjective matter dependent upon

how the individual wishes to represent their measurements. Table 3.1 shows an overview

of each scale type followed by comprehensive definitions.

SCALE
TYPE EXAMPLE DESCRIPTION APPLICABILITY TO

COMPLEXITY

nominal set of license plates one plate can only belong to one
car weak

ordinal military rank E1-E9, O1-O10 clearly indicates
ranking order strong – the basis

interval Fahrenheit/Celsius
one unit on the scale represents
the same magnitude across the
whole range of the scale

weak

ratio money so many Deutche marks is
equivalent to US dollars strong

absolute Kelvin
00K is the temperature where
atoms have no movement and
give off no heat

some

Table 3.1. Scale Types. “After [Ref. 15]”

 18

[Ref. 5] provides the following definitions on scale types:

Definition 3.1: Nominal. Nominal variables allow for only qualitative
classification. That is, they can be measured only in
terms of whether the individual items belong to some
distinctively different categories. We cannot quantify or
even rank order those categories. For example, all we
can say of two license plates is only one can belong to
any given car and the difference between the two is that
they represent different cars. You know nothing of the
cars themselves and therefore cannot quantify the
difference. Another example, two individuals are
different in terms of some variable A (e.g., they are of
different race), but we cannot say which one "has more"
of the quality represented by the variable. Other
examples of nominal variables are gender, color, city,
etc.

Definition 3.2: Ordinal. Ordinal variables allow us to rank order the
items we measure in terms of which has less and which
has more of the quality represented by the variable, but
still they do not allow us to say how much more. Using
military rank as an example, we easily see an order of
responsibility given to individuals based on their rank.
However, we cannot say that every O4 has an equitable
amount of responsibility and that an O2 has half as
much responsibility. Another typical example of an
ordinal variable is the socioeconomic status of families.
For example, we know that upper-middle is higher than
middle but we cannot say that it is, for example, 18%
higher. In addition, the distinction between scale types
(i.e., nominal, ordinal, interval, etc), itself, represents a
good example of an ordinal variable. For example, we
can say that nominal measurement provides less
information than ordinal measurement, but we cannot
say "how much less" or how this difference compares
to the difference between ordinal and interval scales.

Definition 3.3: Interval. Interval variables allow us not only to rank
order the items that are measured, but also to quantify
and compare the sizes of differences between them.
For example, temperature, as measured in the degrees
of Fahrenheit or Celsius, constitutes an interval scale.
We can say that a temperature of 40 degrees is higher
than a temperature of 30 degrees, and that an increase
from 20 to 40 degrees is the same as the increase from

 19

40 to 60 degrees. What we cannot say is that 40
degrees is twice as warm as 20 degrees.

Definition 3.4: Ratio. Ratio variables are very similar to interval
variables; in addition to all the properties of interval
variables, they allow for statements such as x is two
times more than y and still maintain the one to one
relationship of the original measure. Typical examples
of ratio scales are measures of money, time or length.
For example, the US dollar represents and converts to
other currencies dependent on the current rate of
conversion. One inch will always equal 2.54 cm and
two inches equal 5.08 cm, etc. Interval scales do not
have the ratio property.

Definition 3.5: Absolute. Zuse [Ref. 15] and Merriam-Webster
Dictionary [Ref. 8] state, absolute variables are
unconditional. Absolute zero on the Kelvin
temperature scale represents the temperature at which
there is no heat. Absolute variables contain some
properties of the ratio scale. In terms of the Kelvin
temperature scale we can say 100 degrees is one half
200 degrees. Percentage measures are absolute scale
measures. For example:

_ _ /NC number of comments LOC=

_ _number of comments LOCα= .

NC α=

The value of NC has no transformation and therefore is absolute.

2. Scale Type for Software Complexity Measures

Length is instinctively defined as the distance between two points or the duration

of time. This definition helps to choose the proper scale type because it provides

necessary distinction and necessary assumptions. Length can be measured using multiple

units, but the scale remains the same; it is always measured using the ratio scale.

Measuring software complexity, on the other hand, poses some challenges

because of its ill definition and unstated assumptions. We must define what we are

measuring before we can go any further. Software complexity can mean how well we

understand the code, how well it reads, or how easily it can be maintained [Ref. 14]. The

 20

user who is analyzing software complexity must decide which definition best fits his

empirical understanding; this becomes part of the axioms necessary in choosing a proper

measure and helps to incorporate the right scale type.

There is a high degree of subjectivity in choosing the definition of complexity.

This problem becomes evident if the user has to rank the complexity of some programs

and he/she has to explain the reasons for the ranking [Ref. 14]. In Figure 2.1 we showed

this subjectivity with four extracts of Java code. The complexity of the extracts could be

interpreted in several ways, separated by the user’s definition. Only through the

definition, can the user measure complexity properly and only through measuring, can the

user rank the complexity of the extracts. Supplying quantitative results through

measuring, to a qualitative entity, provides objectivity to the subjective nature behind the

definitions. Incorporating the proper scale type provides additional meaning to the

ranking.

What are we comfortable in accepting to be fact? We know the basis of software

complexity is said to lie on an ordinal scale (See Table 3.1). An ordinal scale will only

allow us to say one program is more complex than another. We cannot say to what

degree the difference is. If we wish to say that one program is twice as complex as

another, we must choose measurements that fit on a ratio scale.

D. AXIOMS OF SOFTWARE COMPLEXITY MEASURES

The discussion of axioms has been presented throughout this chapter, requires no

further explanation and best concludes with a definition from Zuse [Ref. 15]:

Definition 3.6: Axiom. “Axioms are conditions or basic assumptions
of reality. Axioms are mostly empirical, but technical
ones are also possible. Axioms formulate certain
empirical properties. The goal in software measurement
is to figure out empirical laws about software
development, software complexity, software
maintainability, etc. The discovery of qualitative laws
of software quality and software development is
another goal of the formulation of axioms in the area of
software measurement. Further goals of formulating
axioms are to get a more precise terminology in the area
of software measurement.”

 21

Most important under this section is the presentation of axioms associated with

software complexity measures. The first of those axioms is a restatement of what we

now know of scale types; the second, a characterization of PSDL; others are made

available to us from other authors:

Axiom 3.3: Software complexity measures lie on an ordinal or ratio
scale.

Multiple software complexity measures originated over the last three decades,

each with desirable properties. What is most interesting is that many of these desirable

properties differ, due to simple bias amongst the authors. Each author had their own

definition of complexity, program conditions, expectations and intuitive understandings.

Some authors provided new measures, while others provided modifications to old

measures [Zuse 14]. Some of those desirable properties apply to PSDL and are given

here as axioms. The relationship of each axiom to PSDL is provided in Appendix B and

can be used as reference any time the reader has a sufficient understanding of CAPS and

PSDL.

The following list of axioms is presented as an intuitive evaluation and serves as

the basis of determining a proper complexity measure for PSDL. Before this list could be

developed, PSDL complexity had to be defined. Complete discussion of this definition is

provided in Chapter IV but is given here, as Axiom 3.4, for justification of this list.

Axiom 3.4: Complexity of PSDL, and the augmented graphs associated
with it, is implicitly defined as its understandability versus
its readability and maintainability.

This is not an exhaustive list of axioms. This subset is used only to expose the

primary approach of developing a complexity measure for PSDL. That approach

specifically pertains to properties of flow graphs, graph theory and nested structures.

The CAPS environment is built upon dataflow diagrams that produce graphs of vertices

and edges.

For most structured or sequential programs, intuitively, an accepted fact is that

nesting yields more complexity. However, for PSDL we believe the opposite to be true.

During a CAPS prototyping session, nesting substructures under a main structure

 22

provides another level of abstraction. This increases modularization and provides greater

cohesion. More importantly, this belief follows the principles of system engineering in

which complex systems are decomposed to the smallest level possible to increase

understanding and hence decrease the complexity. This belief also follows the rules of

heuristics and “Chunk Theory” [Ref. 9] that says humans can only understand 7 ± 2

entities at any given time. The axioms are now presented as:

1. Axioms from Tsai, Lopez, Rodriguez and Volovik. [Ref. 14]

These axioms originally applied to dataflow measures, but there are similar

findings for measures based on flow graphs [Zuse 14].

Axiom 3.5: One of the most significant properties of a metric is to
conform to intuition. Intuition applied to the objects being
measured means that objects, which are seemingly more
complex (from one’s previous experience) should also be
declared as more complex when the metric is applied.
Objects that are about equal complexity should also
measure about the same. The point is that some objects
seem simpler to most people than other objects, and the
metric should, in most cases, confirm to this observation.

This axiom holds for Measurement Theory, in Section B, as well.

Axiom 3.6: Another property of metrics going hand in hand with
intuition is consistency (or monotony). In other words, if
data structure x is a substructure of a data structure y, then

() ()Complexity x Complexity y≤ .

This is self-explanatory.

Axiom 3.7: The measure should measure the structure of data, not only
the size of data. Structure of data tends to be stable during
the design process, whereas size of data might not be
known even during run-time.

This refers back to our discussion in Chapter I and II that software size is only one

way to measure software and is often not appropriate to measure complexity.

Axiom 3.8: It should be possible to use the metric at a stage of the
software design when not all of the decisions have been
already made. Measuring a finished product to guide its
design is of no use. It is too late. To support these

 23

properties, the metric should tolerate incomplete
information.

Simply put, it is important for complexity measures to be used early in software

development.

Axiom 3.9: The metric should have the property of automation. Given
a data structure description in some formal language, it
should be possible to produce a formal machine ready
representation of the data structure. The representation
seen can be used as an input to a program and the set of
measurements can be produced. Resulting measurements
themselves should have such a form that humans can easily
interpret them, as well as being easily used as an input to
some metric-based design support system. To provide
automation, the metric should be based on some
mathematical foundation.

This axiom lists the importance of three items for complexity measures:

automation, simple interpretation and use, and mathematical foundation. Zuse [Ref. 14]

also comments that:

…although it is important for measures to be based on some mathematical
foundation, it must be noted that a measure which is based on solid
mathematical foundation may not be an appropriate software complexity
measure.

This statement is taken to mean that other properties other than math may be more

appropriate.

Axiom 3.10: Most people cannot manipulate more than a small amount
of information at the same time unless there are visual tools
available to assist them. Therefore, it is of importance to
be able to visualize the process of measurement. It should
be easy to present a pictorial representation of the data
object and to illustrate graphically the process of
application of the metric to a particular data structure.

This axiom holds for the rules of heuristics and “Chunk Theory” [Ref. 9]. It also

further clarifies Axiom 3.9 to say that the measure should be easy to understand and use.

2. Axioms by Weyuker [Ref. 14]

Table 3.2 is provided for clarity:

 24

NOTATION EXPLANATION
, ,P Q R Program Bodies
;P Q Is composed of P and Q, some binary operation.

()Pµ Denotes the complexity of P, with respect to some
hypothetical measure, and is always a non-negative number.

()Qµ Denotes the complexity of P, with respect to some
hypothetical measure, and is always a non-negative number.

It holds for any P and Q : () () () ()P Q or Q Pµ µ µ µ≤ ≤ - Two programs
are either equally complex or not equally complex.

Table 3.2. Notation of Weyuker. “From [Ref. 14]”

Axiom 3.11: () () () ()()P Q P Q P Qµ µ∃ ∃ ≡ ∧ ≠

The intuition behind this property is that even though programs compute
the same function, it is the details of the implementation that determine the
complexity of the program, not the function being computed by the
program.

This axiom’s literal meaning is: There exists some P and Q, P and Q are similar

programs and their complexities are not equal. The literal meaning is not accepted

because it is simply false.

The quoted definition is more exact and is acceptable. Its meaning is interpreted

as: two programs having similar functions may not be equally complex because there is

more to a program than just the functions it performs.

Axiom 3.12: () () () () () ()(); ;P Q P P Q and Q P Qµ µ µ µ∀ ∀ ≤ ≤

We believe that “monotonicity” is another fundamentally important
property and it is difficult to imagine the sense in which a measure which
fails to satisfy the monotonicity property is measuring complexity.

This axiom’s literal meaning is: For every program P and Q, the complexity of P

and the complexity of Q is always less than or equal to any program that is composed of

P and Q. This is completely acceptable and defines our use for PSDL. Refer back to

Measurement Theory, and Figure 3.1; the use of composition and concatenation were

given.

 25

The literal meaning of monotonicity is: having the property either of never

increasing or of never decreasing as the values of the independent variable or the

subscripts of the terms increase [Ref. 8]. The use of the word monotonicity is neither

accepted for our purposes nor does it seem appropriate when speaking of programs.

Axiom 3.13: () () () () ()();P Q P Q P Qµ µ µ∀ ∀ + ≤

The question is, given that the complexity of a program body should be no
less than the complexities or each of its parts, can we make a stronger
statement? For example, should the complexity of a program body be no
less than the sum of the complexities of its components? Intuitively, in
order to implement a program, each of its parts must be implemented.

This axiom’s literal meaning is: For every program P and Q, the sum of

complexity P and complexity Q is less than or equal to the complexity of a program that

is composed of P and Q. In short, this entire axiom can mean that the whole is greater

than the sum of its parts. Measurement Theory holds for this axiom because it relates the

sum of complexities as being less than or equal to the complexity of a concatenated

program.

3. McCabe Cyclomatic Complexity (MCC) Measure

McCabe has worked with complexity measures since the mid 1970’s when he

formulated his first measure based on flow graph theory represented as {MCC-V(G)}

(this represents a hyphenated abbreviation for McCabe’s Cyclomatic Complexity versus

the difference between two variables MCC and V(G)). In Appendix A [Ref. 2] we find

that cyclomatic complexity, v(G), is defined for each module to be:

e - n + 2
where:
 e = the number of edges and
 n = the number of nodes in the control flow graph

Cyclomatic complexity is known as v(G), where v refers to the cyclomatic

number in graph theory and G indicates that the complexity is a function of the graph G.

Cyclomatic complexity is a measure of the number of independent paths that exist in a

strongly connected, undirected graph (i.e., a strongly connected graph is one in which

 26

each node is reachable from every other node). It is precisely the minimum number of

paths in linear combination that can generate all possible paths through the module.

Normally, the cyclomatic number in graph theory is defined as e - n + 1.

However, McCabe [Ref. 7] points out that program control-flow graphs are not strongly

connected, but can become strongly connected when adding a "virtual-edge" to connect

the exit node to the entry node. Thus, the cyclomatic complexity definition for program

control-flow graphs is derived from the cyclomatic number formula by simply adding

one to represent the contribution of the virtual edge.

In PSDL a similar theory holds. A virtual parent node, not shown in the drawing

pane, but indicated in the tree pane of CAPS, is added to every dataflow diagram. The

diagram is actually nested under this parent node. The two are virtually connected via a

single edge. This node and edge remain constant for every diagram and receives no

consideration as part of a PSDL complexity measure.

The axioms of graph theory are applicable to PSDL and are considered.

McCabe also based his measurements on graph theory. Unfortunately, because his

measurements lack sensitivity to nesting, they are not applicable to PSDL. Nonetheless,

the presentation of McCabe’s measures and axioms receive consideration because of his

reputation with complexity measures and their significance and connection to graph

theory rather than their direct applicability to PSDL. To keep consistent with the before

mentioned axioms, discussion of this applicability is provided in Appendix B. The

following is listed as a single axiom and is offered for its sagacity [Ref. 14] and [Ref. 7]:

Axiom 3.14:

• MCC-V(G), is the maximum number of linearly independent paths
in G; it is the size of a basis set.

• MCC-V(G) depends only on the decision structure of G. – The
independent paths through the structure represent decision points
for data to flow.

• MCC-V(G) ≥ 1, there must be at least one independent path for
every graph.

• G has only one path if and only if v(G) = 1

 27

• Inserting or deleting functional statements to G does not affect
v(G). – Only the independent paths affect G.

• Inserting a new edge in G increases v(G) by unity. – The addition
of one edge increases the complexity by one.

E. CATEGORIES OF SOFTWARE COMPLEXITY MEASURES

In the previous section we presented axioms that represented a subset of desirable

properties of software complexity measures. That subset also serves as the basis for

deriving a complexity measure for PSDL. Axioms are conditions or basic assumptions of

reality. Part of the reality with software complexity measures is that they fall under

different categories based on their characteristics. This section helps to identify those

categories.

Measurement is quantitative; it is about counting. What can be counted in

software? Flow graphs are an important part of software engineering so we can count

nodes, edges, and repetitions. In actual source code, we can count LOC, timing

constraints, data types, etc. However, if we were to count LOC and define it as our

complexity measure, we probably could not gather enough information to describe its

understandability or readability but it may say something about its maintainability.

Choosing the right measure means understanding the individual characteristics of

a particular measure, the individual characteristics of the software and the goals of the

measurement. LOC is only one measurement and is representative of sizing measures. If

complexity is interpreted as maintainability then knowing the length of a program may be

useful.

1. Categories by Zuse [Ref. 15]

Size represents just one category under software measures. Zuse [Ref. 15]

provides other classifications, as well. He specifically categorizes the following as

software complexity measures, each represented with an example:

• Size Measures – LOC

• Data Structure Measures – Data processed by the program.

• Control Flow Measures – McCabe’s Cyclomatic Complexity (MCC)

• Information Flow Measures – Henry et al.

• Software Science Measures – Halstead

 28

Size is the notion that as things get larger or contain more parts, they are more

difficult to work with and harder to understand. Something that is harder to understand

is, therefore, more complex. As long as the user’s instinct tells them size is

understandability and understandability is complexity, it can be used properly under those

conditions.

Data structures handle variables from the first time they are assigned to the last

time they are referenced or assigned. If this is an important notion to the user, then it

may be an important notion under complexity.

How a program controls the flow of data is another characteristic of programs

that can be measured, and can be used to represent complexity under the right

circumstances. MCC is a simple example of this type of measure.

Henry and Kafura [Ref. 4] gave us information flow measures in the early 80’s.

These measures are useful with larger programs containing multiple modules and

describe how data flows between modules. They provide a different classification

scheme of software measures, which is presented below.

Lastly, Halstead [Ref. 3] gave us some of the earliest software measures of the

70’s that fit under the category of software science measures. Counting the unique

number of operators and operands in a program, Halstead presents several equations to

calculate program length, volume, level, purity and effort. Length and volume also fit

under sizing measures.

2. Categories by Henry and Kafura [Ref. 4]

Henry and Kafura [Ref. 4] who gave us information flow measures, do not use

size as a classification. They categorize software measures differently. The classification

falls into the following three areas, each with experts providing measurements in that

category:

• Lexical Content – Halstead, McCabe, Thayer

• Information Theoretic Concepts – Alexander, Channon

• Information Flow – Henry, Kafura

 29

First are those based on lexical content such as Halstead, McCabe and Thayer

measures. Halstead measures count total number of unique operators and operands.

McCabe works with independent paths and Thayer introduces a measure that counts the

occurrence of a wide variety of statement types.

Other measures concentrate on information theoretic concepts, such as entropy.

These measures formulated through Alexander’s work in architecture and design and

Channon’s work analyzing software structure. Unfortunately, these techniques require

manual manipulation and are not proven as practical lexical measures.

A third type of measure deals directly with information flow through system

connectivity. The importance of dealing with information flow is the ability to examine

the software at design time, providing a quantitative assessment early. There is also the

ability to automatically generate the measure versus a manual approach with measures

that analyze the software structure. This premise holds specifically for Axiom 3.9.

F. SUMMARY

We find that in order to derive a measurement you have to understand the

principles of measurement theory (i.e., the mapping of empirical relations to formal

relations). You must understand the principles behind scale types (i.e., nominal, ordinal,

interval, ratio and absolute); that there is some admissible transformation between the

numbers in your scale. Finally, stated assumptions (i.e., axioms) are important when

defining the measurement.

Measuring gives a quantitative result to an empirical understanding. It is easy to

see one item bigger than another but that requires direct observation. Placing a value to

that observation allows others the understanding of its relational composition. In time,

and when standards of measurement have been met, the understanding becomes

commonplace because a scale is built.

The basic rules of measurement apply also to software complexity. A scale and

scale type need to be decided to provide meaning to the measurement. We can’t say that

40 degrees is twice as warm as 20 degrees, but we can say that 40 feet is twice as long as

20 feet. The idea of temperature versus length is intuitively and fundamentally different.

 30

This was not understood so well before standard practices upon which to measure

temperature and length were decided and units of measurement placed.

In the beginning, there were multiple methods and units available to measure

temperature and length. There was no standard. So, too, is the case with software

complexity today. In time, there may be standards by which all software complexity is

measured. In time, we will know just how complex a program measuring 50 is. But 50

what? The standard methods will help but they will not curb the different units of

measurement. The standards can be chosen somewhat subjectively so long as the

formal/quantitative relation continues to map to the empirical relation. These relations

are the only manner in which to establish the standards. Axioms (i.e., empirical

assumptions) must be explicitly stated to understand the mapping that occurs.

 31

IV. PSDL CHARACTERISTICS

A. OVERVIEW

Appendix A [Ref. 2] provides a brief description of the CAPS process. CAPS

performs rapid prototyping for real time systems by providing developers with a tool that

maps visual graphics to a specification language (i.e., PSDL). PSDL is the key

component to CAPS used at the design level to help flesh out requirements and can be

incorporated into system feasibility studies. With the graphics editor, a skeleton of the

system can be quickly drawn using an enhanced dataflow diagram with real time

constraints.

Rapid prototyping is particularly effective for ensuring that the requirements

accurately reflect the user’s real needs, increasing reliability, reducing costly

requirements changes [Ref. 6] and helps in estimating costs of the intended system. The

process of rapid prototyping is an iterative one. The intent is not to build a fully

executable system; it is to quickly build a working model that can be implemented with

and by the user to ensure the needs of the user are being met. The prototype is not

intended to be the final system. CAPS provides the capability of evolutionary

prototyping, however, many times prototypes will not be included in the development of

the actual system.

Essential in rapid prototyping is a working model that is easy to understand and

modify. Software engineers will find themselves using the model while working with

users, possibly making changes on the spot, as the problem and solution domains are

better understood and defined. The most effective approach to rapid prototyping is

through modularity. Modularity provides a quick approach with less coupling, while

increasing understandability, reliability and maintainability of the actual system.

B. PSDL COMPUTATION MODEL

Luqi and Berzins [Ref. 6] make available an excellent description of executable

PSDL.

 32

PSDL is based on the enhanced dataflow diagram, a directed graph with

associated timing and control constraints. The nodes/vertices of the graph are operators;

the edges are data streams.

Operators are either functions (without an internal state) or state machines (with

an internal state). When an operator fires, as a consumer, it reads one input value from

each incoming edge; as a producer, it puts at most one computed output value on each

outgoing edge. An operator’s firing can be triggered by the arrival of a specified set of

input data values, from a set of edges, or by a periodic timing constraint. There are two

kinds of operators, atomic or composite. Atomic operators can be found in a software

database or supplied by the software engineer. Composite operators abstract one or more

operators. Fully decomposed, composite operators contain smaller dataflow diagrams of

atomic operators.

The firing of an operator and the production of an output value can also be subject

to conditional control constraints that depend on locally available data values. This

limited facility for interconnecting operators is well matched to the needs of real-time

systems, where each operator must complete its task in a fixed time.

A data stream carries values of an abstract or primitive data type. Both the built-

in and user-definable PSDL data types are immutable. An immutable type has no

operations for changing the state of a data object, so all changes appear as newly

generated data values rather than as updates to existing data objects.

The generic built-in PSDL types include tuples (records), one-ofs (tagged

variants), sets, sequences, maps (lookup tables), and relations. These types provide a

powerful facility for defining finite collections of any value type and make it easy to

construct many user-defined abstract data types. PSDL also has primitive data types for

numbers, strings, and truth-values.

Each data stream is either a dataflow stream, which guarantees that each data

element that enter is delivered exactly once, or a sampled stream, which guarantees that a

data element can always be entered into or delivered from the stream on demand, at the

cost of replicating elements or discarding older values. A dataflow stream acts like a

 33

first-in, first-out queue whose length is bounded by one. A sampled stream acts like a

memory cell that always contains the most recent data value in the stream and that can be

updated at any time.

In PSDL, the control and timing constraints of the operator receiving a stream

determine whether the stream is a dataflow or sampled stream. If the triggering of an

operator occurs only when all data arrives from a set of data streams, those data streams

in the set are considered dataflow streams, otherwise they are considered sampled

streams. Dataflow streams are discrete dataflows; sampled streams are continuous

dataflows. The constraints guarantee there will be data values on all the input streams of

an operator whenever it fires. Exceptions are treated as data values of a special data type,

which flow down data streams subject to the same rules as ordinary data values.

Each operator can have a maximum execution time (MET) and a maximum

response time (MRT), which are treated as hard real-time constraints. Operators with

real-time constraints are periodic (synchronous) or sporadic (asynchronous). Giving its

period specifies the firing frequency of each periodic operator. The minimum calling

period (MCP) between firings is also specified for each sporadic operator to record the

necessary assumptions about worst-case operation conditions for asynchronous external

events.

You can also associate control constraints with operators. These include

conditions that act as output guards for firing an operator, or passing an output value to a

data stream, and as exception guards to control exception conditions or timers.

It is easy to describe individual timing constraints of a real-time system, but large

real-time systems often contain a mixture of periodic and sporadic operators with many

different frequencies. The interactions between such timing constraints can be very

complex and very difficult to analyze without the help of a computer.

C. PSDL COMPLEXITY

In an empirical sense, we find the complexity of PSDL to be based on the

following characteristics and the properties of operators and data streams:

• Degree of modularity/decomposition

 34

• Number and type of operators/nodes (atomic, composite, external systems
or internal software)

• Number and type of data streams/edges (dataflow, sampled or state
streams)

• Timing constraints (MET, MRT, MCP)

• Control constraints (triggering, guards, periodic or sporadic firing)

• Number of unique types (abstract versus primitive data types)

• Degree of understandability, maintainability, and reliability of the final
system.

Many complexity measures look first to the code and then represent that code as a

dataflow diagram (e. g., McCabe’s Complexity measures). We are at an advantage with

PSDL because it is auto-generated code from a CAPS dataflow diagram. Only in

empirical terms, do we need not concern ourselves with the actual PSDL code; the

diagram itself more easily represents its complexity (holds for Axioms 3.5 and 3.10).

Subsequently, in the simplest of terms, to decrease complexity of PSDL we need to

increase the understandability of the dataflow diagram. Although PSDL can support

evolutionary prototyping, we will not concern ourselves with its ability to be maintained

or to be completely reliable when considering complexity. Because many prototypes are

of a throwaway nature, not intended to evolve into actual systems, we will concentrate

solely on complexity in terms of understandability (i.e., Axiom 3.4). The scope of

complexity measurements, itself, should remain simple (i.e., Axiom 3.9, 3.10). This

approach does not remove the importance of or correlation between complexity,

maintainability and reliability. In the words of McCabe [Ref. 7]:

Overly complex modules are more prone to error, are harder to
understand, are harder to test, and are harder to modify. Deliberately
limiting complexity at all stages of software development, for example as
a departmental standard, helps avoid the pitfalls associated with high
complexity software.

Therefore, reducing complexity through understandability will implicitly increase

maintainability and reliability. There are direct relationships between them all.

Initially, the dataflow diagram represents a subset of system requirements that the

software engineer chose to implement, to aid in the requirements process, and to

 35

determine if real time constraints of those features can be satisfied. Essentially the

prototype tries to determine if the system will behave according to its specification. A

software engineer can use the prototype and representative dataflow diagram to work side

by side with the user and explain their understanding of the problem domain.

Concurrently, they will be explaining the solution domain to the user. It is

imperative that the diagram is easily understood to facilitate this process. Later, during

the design process, the software engineer will include more features in the prototype to

represent the proposed system more accurately and completely. This prototype, if

elected, can go through an evolutionary approach for development of the actual system.

Again, it is very important to alleviate the complexity of the diagram to increase

understandability by other software engineers and system engineers who may take part in

the development of the intended system.

Figure 4.1 and 4.2 represent two separate dataflow diagrams from CAPS to

illustrate the empirical meaning behind understandability and complexity. The figures

illustrate the difference in complexity. Figure 4.1 represents the dataflow diagram for an

Autopilot Control System and Figure 4.2 for a Fish Farm Control System. The sheer

difference in numbers of nodes and edges (i.e., 12 versus 26 respectively) could represent

greater complexity in Figure 4.2 versus 4.1. Empirically and in terms of

understandability, Figure 4.2 certainly seems more complex than Figure 4.1.

Should like systems represented by two different diagrams with an unequal

number of nodes and edges be considered equally complex? Should distinct systems,

represented by diagrams of equal nodes and edges, be considered equally complex?

Figure 4.3 represents another Fish Farm Control System. The total number of nodes and

edges for Figure 4.2 is 26 and for Figure 4.3 is 24. They are like systems, performing the

same function, and have unequal complexities. Thus, it is quite possible to have like

systems of different complexity based on the software engineer’s interpretation of the

requirements. However, relying solely on counting nodes and edges merely represents a

measure of size versus complexity and may not be the best representation, as described in

Chapter I and II and Axiom 3.7.

 36

Axiom 3.11 also told us that there is more to a program’s complexity than the

functions it performs. Where we have like systems with unequal complexities, we can

also have distinct systems, of equal nodes and edges, with unequal complexities. It is

quite obvious at this point that in order to identify the complexity properly, we cannot

look only to the functions a program performs (holds for Axiom 3.11) or to the size of the

program (holds for Axiom 3.7). You must turn to other properties to measure complexity

accurately.

Figure 4.1. CAPS Dataflow Diagram of an Autopilot Control System.

 37

Figure 4.2. CAPS Dataflow Diagram of Fish Farm Control System I.

Figure 4.3. CAPS Dataflow Diagram of Fish Farm Control System II.

 38

D. DECOMPOSITION AS A CHARACTERISTIC

From a systems engineering standpoint, we decompose complex systems to the

lowest level needed to increase our understanding of the system. CAPS approaches its

design in a similar top-down fashion for much the same reason. When building the

model we try to keep the numbers of nodes in the drawing pane to 7 2± for simplicity

and ease of understanding. This notion fits into the theory that human short term or

working memory can only process 5-9 “chunks” of information where a chunk is any

meaningful unit of measurement. [Ref. 9] In this case, a chunk could be considered a

single node in the diagram. To assist with this notion CAPS makes use of composite

operators. Abstracted under a composite operator is the substructure, another dataflow

diagram, to complete the system. If increasing the modularity through composite

operators in the requisite diagram increases understandability, it should decrease the

overall complexity. From another perspective, decomposition of modules helps to refine

or hone the prototype by increasing the reuse of existing components. Reuse is another

method of keeping complexity in check.

Reusing the Autopilot Control System of Figure 4.1 we can see the composite

operator, autopilot_software being used, represented as nested nodes. Figure 4.4 shows

the decomposition of the operator.

To accurately represent complexity of the entire Autopilot Control System we

need to take into consideration the decomposition of autopilot_software, (Figure 4.4).

From a strict additive sense, Figure 4.1’s 12 nodes and edges combined with Figure 4.4’s

11 nodes and edges (note: edges actual_altitude and actual_course were only counted

once) give us a complexity of 23 for the entire system. By Axiom 3.13, if we treat the

diagram as a composition of the top-level structure and the substructure, without

composite operators and modularity, it should be more complex than the sum of each

individual diagram.

 39

Figure 4.4. Decomposition of autopilot_software.

Expanding Figure 4.1 by concatenating Figure 4.4 yields a flattened diagram

represented in Figure 4.5. Here we have a total of 16 nodes and edges versus the sum of

23 (note: actual_altitude and actual_course are represented in this diagram as a hyper-

edge but only counted once). Clearly, expanding the diagram presents us with a

representation using no composite operators, and no modularity, (i.e., a more complex

diagram), but the complexity value does not represent this (does not hold for Axiom 3.5).

We wish to say that building our system with composite operators has a positive affect on

understandability by decreasing the complexity. Simply viewing complexity by

expanding the diagram does not present us with this fact. We could have simply built the

model without composite operators in the first place.

 40

control_surfaces

delta_course

rudder_status elevator_status

delta_altitude

course_command altitude_command

compass altimeter

actual_course actual_altitude

desired_course
desired_altitude

gui

correct_course correct_altitude

Figure 4.5. Expanded Autopilot Control System.

Another possibility is to view the diagrams separately, as in the strict additive

case, but instead of counting each edge of Figure 4.4, count only those edges not

represented in the original diagram of Figure 4.1. In Figure 4.4 we see those edges

without any EXTERNAL markings and labeled desired_course and desired_altitude.

This approach also holds for Axiom 3.6 where if we counted each node and edge, of

Figure 4.4, we would have 13, which is unacceptable.

 Figure 4.4, then, gives us a possible 5 nodes and operators that can then be added

to the original 12 for a complexity of 17. Unfortunately, 17 represents greater complexity

than our flattened diagram of 16. For Axiom3.5 and 3.13 to hold, we need to find a way

to quantify the complexity where the measurement falls between a minimum and

maximum (i.e., 12 and 16 in this example).

 41

E. SUMMARY

PSDL is auto-generated specification code from CAPS. CAPS was developed as

a tool for rapid prototyping of real-time systems. When building a prototype in CAPS, it

is essential the working model is easy to understand and modify (holds for Axiom 3.9 and

3.10). This is partly accomplished by CAPS’ ability to translate enhanced dataflow

diagrams into PSDL. The PSDL computational model is represented as an augmented

graph: G = (V,E,T(v),C(v)), where:

• V is a set of vertices (v) representing operators.

• E is a set of edges representing data streams.

• T(v) is the set of timing constraints for each node v.

• C(v) is the set of control constraints for each node v.

Each operator and data stream can have associated properties that affect the

production, consumption and flow of data. For operators the properties are timing and

control constraints; for data streams the properties are related to latency timing. We also

find that operators can be represented as atomic or composite operators, and data streams

can be represented as dataflow or sampled streams. The behavior of each operator and

data stream depends on its properties and type. Each type of operator and data stream has

its own complexity, which changes with additional properties.

To fully investigate complexity of PSDL we must, therefore, take into

consideration the type of and properties associated with operators and data streams. Part

of this is to properly account for composite operators that are abstracted substructures.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

V. PSDL COMPLEXITY MEASURE

A. OVERVIEW

A proper measurement is one that will answer the question “What do I want to

learn?” or “What is the measurement goal?” These questions help to identify the

purpose of the measurement. A complexity measurement should represent our intuitive

idea of complexity. [Ref. 14]

For PSDL we need to learn about its characteristics in order to recognize the

attributes that contribute to its complexity. In Chapter IV, we defined its complexity to

be the understandability of the dataflow diagram defined by G = (V, E, T(v), C(v)) (see

also Appendix A [Ref. 2]). Our intuition tells us a diagram with many nodes, edges and

constraints is one of great complexity; the goal then is to model systems using as few of

these attributes as possible. Furthermore, we stated that the use of composite operators

gives us a diagram (i.e., a system) with greater understandability, hence, less complexity.

To accomplish this goal we could have started with a clean slate, developing a

complexity measure that is unique to PSDL. Instead, we find that Zuse [Ref. 14, 15]

provides us with a list of nearly 1500 software measures, 100 of which deal with

complexity directly. We find those measures available in a broad software application

called Zuse/Drabe Measure Information System (ZD-MIS) [Ref. 16] that contains an

extensive database. Figure 5.1 is a screen shot of this application showing an

alphabetical listing of a subset of the measures, A-M. There are 854 measures, A-M.

The measure D-INFO is highlighted because it will be discussed later in this chapter.

To make use of these measures we need to consider and study their properties to

determine any possible correlation to PSDL. We discussed in Chapters I, II and III how

sizing measures may or may not be proper to represent complexity. We showed in

Chapter IV how one additive sizing measure did not hold for Axiom 3.13. Therefore,

sizing measures are not considered because they do not represent our intuitive idea of

complexity for dataflow diagrams.

 44

Figure 5.1. ZD-MIS Database. “From [Ref. 16]”

B. EARLY CONSIDERATIONS

Noguiera [Ref. 10] presented two PSDL complexity measures: Large Granular

Complexity (LGC) and Fine Granular Complexity (FGC). LGC was mentioned in

Chapter II and is presented in detail in Appendix A. [Ref. 2] LGC is not being considered

because it represents a similar notion of strictly adding the number of nodes and edges

together. In Chapter IV we presented the same notion and quickly established it had no

validity under the premises of understandability and did not hold for Axiom 3.13.

His second, FGC, is taken literally as fan_in + fan_out of data streams into and

out of each operator:

Equation 5.1: () _ _iFGC o fan in fan out= +

where:

io is a particular operator

 45

This measure is presented as the relational complexity of the number of data

streams into and out of an operator and when that number tends to get large, the designer

should consider the use of composite operators to reduce complexity.

Measures based on information flow also propose the idea of fan_in and fan_out

(i.e., information going into and out of modules). From Zuse [Ref. 15, 16] we learn many

things about these types of measures that can then be used to evaluate their applicability

to PSDL, using the axioms of Chapter III. Information flow measures:

• lie on ordinal and ratio scales – Axiom 3.3 holds.

• are related to structure charts – Axiom 3.7 holds.

• can be used during the design, coding and testing phase – Axiom 3.8
holds.

• are related to entire systems and independent modules – Axioms 3.9-3.11
hold.

• are type classified as complexity and comprehendability (i.e.,
understandability) measures.

There are many information flow measures available but Henry and Kafura [Ref.

4] started the concept in the early 80’s with the following equation defined as a function

of each module i:

Equation 5.2: () ()
2

1

*
n

i

D INFO fi i fo i
=

 − =

∑

where:

• D-INFO is the name given to the measure by Zuse [Ref. 15]; it is a
hyphenated abbreviation; the meaning of D could not be found, INFO is
information.

• fi is fan_in of module i and ()max _ ,1fi fan in= ,

• fo is fan_out of module i and ()max _ ,1fo fan out= ,

• n is the total number of modules.

This complexity measure takes the product of the total number of fan_in and

fan_out streams per module, representing the total possible number of combinations of

fan_in streams to fan_out streams for the module. The complexity is then found by

taking the sum of all possible number combinations for the system. The power factor of

 46

two is used based on earlier work in the laws of programmer interaction and system

partitioning. [Ref. 4]

Zuse redefines the measure by dropping the square because it can be argued there

is not much gained in an empirical sense by squaring the value so long as the value

remains positive. Equation 5.3 will become the basis for the PSDL complexity measure.

Equation 5.3: () ()()
1

' *
n

i

D INFO fi i fo i
=

− = ∑

where:

• D-INFO’ is the name given to the refined measure.

• fi is fan_in of module i and ()max _ ,1fi fan in= ,

• fo is fan_out of module i and ()max _ ,1fo fan out= ,

• n is the total number of modules.

C. DEVELOPING THE COMPLEXITY MEASURE FOR PSDL

1. Complexity and Hybrid Measures

A complexity measure for PSDL needs to consider three things: scale,

properties, and information flow. First, in Chapter III we defined scales and presented

Axiom 3.3 that stated complexity measures must fall under ordinal or ratio scales. Next,

in Chapter IV we stated the operators and data streams (i.e., nodes and edges) each have

properties contributing to different levels of complexity. Finally, as depicted above,

information flow seems to show some promise in determining the complexity of the

dataflow diagram. Therefore, what we need is a hybrid measure that takes all of these

into consideration.

When defining or developing hybrid measures, especially when combining two or

more individual measures, it is important to ensure there is nothing lost, empirically or

qualitatively, by combining those measures. It is also important that if measures are

combined additively, that the units are accurately accounted for. Zuse [Ref. 15] provides

and excellent example of this with the following:

Equation 5.4: 2MCC V E N M− = − +

 47

Equation 5.5:
M

HC
L

=

Equation 5.6:
A

SC
M

=

Equation 5.7:
()2 2M AL LM E N M

C
LM

+ + − +
=

The individual complexity measures in Equation 5.4 (a sizing measure of

McCabe), Equation 5.5 (a hierarchical complexity measure) and Equation 5.6 (a

structural complexity measure) are combined as a sum to represent the whole system in

Equation 5.7. Providing detail of these measures is not important to show the purpose of

this example. It is clear that the hybrid measure in Equation 5.7 is not a good

representation of the whole system because M modules and L levels in the hierarchy are

represented in both the numerator and denominator. As M or L increase or decrease, C

will not change proportionally, as we should expect empirically.

2. Complexity and Information Flow

Initial analysis considered Equation 5.8 as a possible complexity measure. It is

similar to Nogueira’s FGC in Equation 5.1. However, where FGC calculates a

complexity of each individual operator, Equation 5.8 calculates complexity of the entire

system by summing the individual operator complexities.

Equation 5.8: () ()
1

_ _
n

i i
i

C fan in o fan out o
=

= +∑

where:

• C is the total complexity,

• i is an index for each operator,

• n is the total number of operators.

Equation 5.8 presents two key problems. First, using an additive value of fan_in

and fan_out provides an inaccurate representation of input and output data streams.

Second, it promotes no intuitive understanding of complexity. The best relationship for

complexity is a multiplicative one as in Equation 5.3. Figure 5.2 shows an example of

the additive versus multiplicative relationship of fan_in and fan_out.

 48

OP1 OP2

Figure 5.2. Relationship of Fan_in and Fan_out.

The dataflow diagram in Figure 5.2 is described by the tuple G = (DSI, DSO),

where: DSI is data streams in, DSO is data streams out. The sum of data streams for OP1

= (4, 1) and OP2 = (3, 2) would be: 4 + 1 = 5 and 3 + 2 = 5. Whereas the product of

those data streams is: 4 * 1 = 4 and 3 * 2 = 6. Certainly, the complexity of these two

diagrams is not equal as is shown in the additive case. Empirically the complexity

associated with OP2 is greater than that of OP1 as is shown in the multiplicative case.

Additionally, the product of these streams represents all possible combinations of input

data streams to output data streams. As these combinations increase, so too, should the

complexity.

3. Complexity and PSDL Properties

Information flow and the product of input and output data streams provide a good

starting point to measure complexity of PSDL. Further, the properties of the data streams

and operators require consideration. In Chapter IV we briefly defined some

characteristics of PSDL and touched upon some of the properties associated with

operators and data streams. Table 5.1 lists those properties in more detail, presenting

them on an ordinal scale from greatest to least complexity.

Table 5.1 shows internal software components more complex than external

systems. Additionally, composite operators are more complex than atomic operators. It

also shows abstract data types being more complex than primitive types and dataflow

streams of more complexity than sampled streams.

 49

OPERATORS DATA STREAMS

A. Internal Software Components (ISC) A. Abstract Data Types (ADT)

 1. Composite Operators (CO) 1. Dataflow Streams (DF)

 a. Timing Constraints a. Latency

 1.) Max Execution Time (MET) b. No Latency

 2.) Sporadic Timing 2. Sampled Streams

 a.) Max Response Time (MRT) a. State Stream (SS)

 b.) Min Calling Period (MCP) 1.) Latency (L)

 3.) Periodic Timing 2.) No Latency (NL)

 a.) Period (P) b. Non-State Stream (NSS)

 b.) Deadline (D) 1.) Latency (L)

 b. Control Constraints 2.) No Latency (NL)

 1.) Trigger by All (TA) B. Primitive Types (PT)

 2.) Trigger by Some (TS) 1. Dataflow Streams (DF)

 3.) Execution Guards (EG) a. Latency (L)

 2. Atomic Operators (AO) b. No Latency (NL)

 a. Timing Constraints

M

 2. Sampled Streams

 b. Control Constraints

M

 a. State Stream (SS)

B. External Systems (ES) 1.) Latency (L)

 1. Composite Operators (CO)

 M

 2.) No Latency (NL)

 2. Atomic Operators (AO)

 M

 b. Non-State Stream (NSS)

 1.) Latency (L)

 2.) No Latency (NL)

Table 5.1. PSDL Properties.

 50

Seen directly in a PSDL dataflow diagram (refer to Figure 4.1) are several of the

properties listed in Table 5.1:

• Internal Software Components (ISC) – circular nodes.

• External Systems (ES) – rectangular nodes.

• MET properties – labeled directly above the node.

• Composite Operators (CO) – nested circular nodes.

• Data streams – arrows

• State Streams (SS) – bold arrows

• Instantiations of data types – stream labels.

The ordinal scale of Table 5.1 is partly subjective, partly objective. Internal

software components are internal to the system being modeled whereas external

systems can be thought of as black boxes affecting the modeled system, most often as

sensors. Internal software components are controlled by the designer and represent

greater complexity over the black box external systems. Composite operators have

underlying dataflow diagrams and are clearly more complex than atomic operators,

which are at their lowest level. During program execution, timing constraints are

evaluated prior to control constraints representing greater affect, hence greater

complexity. The individual properties associated with timing and control constraints are

also evaluated in a particular order, which is taken to represent their complexity also.

Periodic operators have regular schedules, are more deterministic, and therefore

represent less complexity than its counterpart sporadic operators.

In the data stream column, abstract data types are represented as being more

complex than primitive types because of the inherent complexity associated with the two

types. Dataflow streams are discreet providing one value to an operator at a time

whereas sampled streams are continuous, guaranteeing delivery of data on demand.

This availability of data is interpreted as dataflow streams being more complex than

sampled streams. State streams represent a property of sampled streams. A state stream

has greater affect on the system and is considered more complex. Lastly, any data stream

that has latency timing associated with it has additional properties and is considered

more complex.

 51

How to use this hierarchical nature of PSDL properties seemed intuitive at this

point. By weighting each property and adding that weight to each individual operator

and data stream, you could represent the value of each operator and data stream as some

value greater than itself. Refer back to Figure 5.2 for the following explanation.

By taking the product of DSI and DSO we represented all possible combinations

of data streams in to data streams out. In that particular example: OP1 = (4, 1) and OP2 =

(3, 2), 4 * 1 = 4 and 3 * 2 = 6. By adding a weighted value to just the data streams, in

this example, OP1 = (some number a > 4, some number b > 1) and OP2 = (some number x

> 3, some number y > 2). Taking the product now yields: a * b > 4 and x * y > 6. What

this tells us is that the complexity is no longer a simple product of fan_in and fan_out, it

is something greater than that. How much greater is dependent upon the weighting factor

i.e., the PSDL properties associated with the data streams. This does not change the

intuitive understanding of complexity. In fact, it presents it more accurately by

considering the properties associated with PSDL. The idea of weighting factors also

holds for Axioms 3.3, 3.5, 3.8 and 3.9.

The example above showed the affect of applying a weighting factor to data

streams. More importantly it showed the validity of using weighting factors to determine

complexity. It was provided to lead us into the next step of building the complexity

measure. That step is the application of weighting to the operators. The base Equation

5.3 is used:

() ()()
1

' *
n

i

C D INFO fi i fo i
=

= − = ∑

Equation 5.3 actually represents fan_in and fan_out per operator and can be

represented as:

Equation 5.9:
() ()

1

*
'

n
i i

i i

fi o fo o
C D INFO

o=

= − =

∑

where:

• C is complexity,

• D-INFO’ is the name given to Zuse’s [Ref. 15] refined measure,

 52

• fi is fan_in of operator oi and ()max _ ,1fi fan in= ,

• fo is fan_out of operator oi and ()max _ ,1fo fan out= ,

• 1i io ω= + ,

• iω is some weighting factor applied to each operator based on its
individual properties.

• n is the total number of modules.

Changing some variables from Equation 5.9, to use PSDL terminology, the

equation can be represented as:

Equation 5.10:
() ()

1

*n
i i

i i

dsi o dso o
DS

o=

= ∑

where:

• DS is complexity on the Dupont Scale,

• dsi is data streams in of operator oi and dsi = max(data_stream_in, 1),

• dso is data steams out of operator oi and dso = max(data_stream_out, 1),

• io is each individual operator and 1i io ω= + ,

• n is the total number of operators.

4. Complexity and PSDL Weighting Factors

The inclusion of weighting factors to the data streams and operators under a base

equation offers a hybrid complexity measure for PSDL that now includes information

flow and, PSDL properties and presents them on a ratio scale. However, adding

weighting factors to each operator as in, 1i io ω= + , generates a number in the

denominator greater than one. This means that as the complexity of each operator

increases, the complexity of the system (i.e., the model), will decrease. This obviously is

not intuitive and makes the hybrid measure invalid. Instead we shall represent the

complexity equation as:

Equation 5.11:
() ()

1
1

*n
i i

i i

dsi o dso o
DS

o −
=

= ∑ or:

Equation 5.12: () ()
1

*
n

i i i
i

DS o dsi o dso o
=

= ∑

 53

As more weighting is applied to increase the complexity of each data stream and

operator, the complexity of the system will also increase.

5. The Weighting Tables

Defining the weights was the next step to defining the measure. This was

accomplished by building a table that included all possible combinations of properties

inherent to data streams and operators. Using Table 5.1, as a basis, the weighting tables

were built in order of greatest to least complexity, left to right and top to bottom. The x-

axis represents all possible types of operators and data streams and the y-axis represents

all possible timing and/or control constraints. Table 5.2 is a table of weighting factors

for operators and Table 5.3 is a table of weighting factors for data streams. Important to

note is the mutually exclusive relationships that exist.

• All types of operators and data streams are mutually exclusive.

• MRT/MCP and Period/Deadline are mutually exclusive.

• TA and TS are mutually exclusive.

• L and NL are obviously mutually exclusive.

 Type (w(t))

Constraint (w(c))

ISC & CO

(0.4)

ISC & AO

(0.3)

ES & CO

(0.2)

ES & AO

(0.1)

MET (0.200) 0.080 0.060 0.040 0.020

MRT (0.178) 0.071 0.053 0.036 0.018

MCP (0.156) 0.062 0.047 0.031 0.016

Period (P) (0.133) 0.053 0.040 0.027 0.013

Deadline (D) (0.111) 0.044 0.033 0.022 0.011

Trigger by All (TA) (0.089) 0.034 0.027 0.018 0.009

Trigger by Some (TS) (0.067) 0.027 0.020 0.013 0.007

Execution Guards(EG)(0.044) 0.018 0.013 0.009 0.004

None (N) (0.022) 0.009 0.007 0.004 0.002

Table 5.2. Weighting for Operators, (ω).

 54

 Type (w(t))

Constraint (w(c))

ADT & DF

(0.286)

ADT & SS

(0.238)

ADT & NSS

(0.190)

PT & DF

(0.143)

PT & SS

(0.095)

PT & NSS

(0.048)

Latency (L)

(0.667)
0.191 0.159 0.127 0.095 0.063 0.032

No Latency (NL)

(0.333)
0.095 0.079 0.063 0.048 0.032 0.016

Table 5.3. Weighting for Data Streams, (ε).

The individual weighting factors (i.e., w(t) and w(c)) for each type and constraint

in Tables 5.2 and 5.3 were determined as follows:

• Each type and constraint was assigned a rank 1 – n based on its
complexity from the hierarchy in Table 5.1. The least complex received a
1; the most complex received a value of n.

• The associated weight of each type and constraint was equal to its rank
divided by the sum of ranks:

Equation 5.13.1: ()
1

n

i
i

w t i i
=

= ∑

Equation 5.13.2: ()
1

1
n

i
i

w t
=

=∑ .

Table 5.4 provides an example.

TYPE (t) RANK (i) WEIGHT (w(ti))
ISC & CO 1 .1
ISC & AO 2 .2
ES & CO 3 .3
ES & AO 4 .4

Table 5.4. Individual Weighting Factors.

The weighting factors in the cells of each table were derived by using the cross

product of w(t) and w(c).

 55

6. PSDL Complexity Measure

Reusing the complexity measure given as Equation 5.12 and adding what we now

know about weighting factors, the complexity measure for PSDL can be fully described

and instructions provided for its use.

() ()
1

*
n

i i i
i

DS o dsi o dso o
=

= ∑

where:

• DS is complexity of PSDL under the Dupont Scale,

• io is each individual operator,

• dsi is data streams in of operator oi and dsi = max(data_stream_in, 1),

• dso is data steams out of operator oi and dso = max(data_stream_out, 1),

• n is the total number of operators.

1i io ω= +

 [] []
1 4
1 9

1 , * ,i
x
y

x y U x yω
≤ ≤
≤ ≤

= + ∑

where: [], 1iU x y = if io is of type x and has constraint y,

[], 0iU x y = otherwise.

()
1

ine

i j
j

dsi o ds
=

= ∑

1

1
ine

j
j

ε
=

= +∑

 [] []
1 1 6

1 2

1 , * ,
ine

j
j x

y

x y U x yε
= ≤ ≤

≤ ≤

 = +

∑ ∑

where: [], 1jU x y = if jds is a data stream in and is of type x and has constraint y,

[], 0jU x y = otherwise,

ein is the total number of data streams in for operator io .

 56

 ()
1

oute

i k
k

dso o ds
=

= ∑

1

1
oute

k
k

ε
=

= +∑

 [] []
1 1 4

1 2

1 , * ,
oute

k
k x

y

x y U x yε
= ≤ ≤

≤ ≤

 = +

∑ ∑

where: [], 1kU x y = if jds is a data stream out and is of type x and has constraint y,

[], 0kU x y = otherwise,

eout is the total number of data streams out for operator io .

D. AN EXAMPLE OF THE COMPLEXITY MEASURE FOR PSDL

To demonstrate how to calculate complexity of PSDL models, we will use the

Autopilot Control System of Chapter IV. Some information needed to calculate its

complexity can be found directly from the augmented graph of Figure 4.1 and Figure 4.4.

For instance, you can easily determine the number of operators and the number of

input/output data streams for each operator. Bold arrows represent state streams, MET

values are listed above each node, and nested nodes easily identify composite operators.

Unfortunately, you must go directly to the PSDL code to find the remaining timing and

control constraints.

CAPS generates two *.PSDL files for every version of every prototype: an

expanded file and a source file. The source file can be found in the “version” directory,

which is located under the “root” directory. Root directory names are equivalent to the

source file name. The source file is the code generated by the original system diagram

drawn by the user (See Figure 4.1). It contains composite operators, if any. The PSDL

source file for the Autopilot Control System can be found in Appendix C. The expanded

file is located in a <<Temp>> subdirectory of the “version” directory. This file is code

generated by CAPS, representing the system as a flattened hierarchy without composite

operators (see Figure 4.5). The PSDL expanded file for the Autopilot Control System

can be found in Appendix A [Ref. 2] as well as other examples.

 57

The information for Table 5.5 was extracted from the PSDL source file for

Autopilot Control System (see Appendix C). That information is highlighted to show

where it can be found. This table shows each operator and data stream with their

respective weights. It also shows the individual properties of each operator and data

stream along with their respective weights.
OPERATOR DATA STREAM

o1 – control_surfaces (1.061)

• ES & AO
− MET (0.020)
− MCP (0.016)
− MRT (0.018)
− TS (0.007)

ds1 – delta_course (1.032)

• PT & SS
− NL (0.032)

o2 – compass (1.033)

• ES & AO
− MET (0.020)
− P (0.013)

ds2 – delta_altitude (1.032)

• PT & SS
− NL (0.032)

o3 – altimeter (1.033)

• ES & AO
− MET (0.020)
− P (0.013)

ds3 – rudder_status (1.063)

• ADT & NSS
− NL (0.063)

o4 – autopilot_software (1.009)

• ISC & CO

ds4 – elevator_status (1.063)

• ADT & NSS
− NL (0.063)

o5 – gui (1.113)

• ISC & AO
− MET (0.060)
− P (0.040)
− EG (0.013)

ds5 – course_command (1.063)

• ADT & NSS
− NL (0.063)

o6 – correct_course (1.113)

• ISC & AO
− MET (0.060)
− P (0.040)
− EG (0.013)

ds6 – altitude_command (1.063)

• ADT & NSS
− NL (0.063)

o7 – correct_altitude (1.113)

• ISC & AO
− MET (0.060)

− P (0.040)

− EG (0.013)

ds7 – actual_course (1.016)

• PT & NSS
− NL (0.016)

 ds8 – actual_altitude (1.016)

• PT & NSS
− NL (0.016)

 ds9 – desired_course (1.032)

• PT & SS
− NL (0.032)

 ds10 – desired_altitude (1.032)

• PT & SS
− NL (0.032)

Table 5.5. Properties and Weights Associated with Autopilot Control System.

 58

In Chapter IV we used Figure 4.1: Autopilot Control System, Figure 4.4:

Decomposition of autopilot_software and Figure 4.5: Expanded Autopilot Control

System to study complexity based strictly on the sum of operators and data streams. We

concluded that the complexity of a system, with composite operators, should fall between

a minimum and maximum value. We also determined by Axiom 3.11, that the whole is

greater than the sum of its parts. The top-level diagram, Figure 4.1, represents the

minimum complexity (i.e, DSmin – the base part of the system); the expanded diagram,

Figure 4.5, represents the maximum complexity (i.e, DSmax – the whole system). The

substructure, Figure 4.4, represents additional complexity (i.e., DSsub – a system part). If

composite operators actually decrease the complexity of our whole system, the sum of the

parts (DSact), should be less than the maximum complexity (i.e., DSmin < DSact < DSmax).

() ()
1

*
n

i i i
i

DS o dsi o dso o
=

= ∑

DSmin = o1[(ds5 + ds6) * (ds9 + ds10 + ds3 + ds4)] + o2[ds1 * ds7]
 + o3[ds2 * ds8] + o4[(ds3 + ds4 + ds1 + ds8) * (ds5 + ds6)]

 = 1.061[(1.063 + 1.063) * (1.032 + 1.032 + 1.063 + 1.063)]
 + 1.033[1.032 * 1.016] + 1.033[1.032 * 1.016]
 + 1.009[(1.063 + 1.063 + 1.016 + 1.016) * (1.063 + 1.063)]

 = 9.451 + 1.083 + 1.083 + 8.919 = 20.536

DSmax = o1[(ds5 + ds6) * (ds1 + ds2 + ds3 + ds4)] + o2[ds1 * ds7]
 + o3[ds2 * ds8] + o5[(ds3 + ds4 + ds7 + ds8) * (ds2 + ds1)]
 + o6[(ds7 + ds2) * (ds5)] + o7[(ds8 + ds9) * ds6]

 = 1.061[(1.063+ 1.063) * (1.032 + 1.032 + 1.063 + 1.063)]
 + 1.033[1.032 * 1.016] + 1.033[1.032 * 1.016]
 + 1.113[(1.063 +1.063 + 1.016 + 1.016) * (1.032 + 1.032)]
 + 1.113[(1.016 + 1.032) * 1.063] + 1.113[(1.016 + 1.032) * 1.063]

 = 9.451 + 1.083 + 1.083 + 9.552 + 2.423 + 2.423 = 26.015

DSsub = o5[1 * (ds1 + ds2)] + o6[ds1 * 1] + o7[ds2 * 1]
 = 1.113[1 * (1.032 + 1.032)] + 1.113[1.032 *1] + 1.113[1.032 *1]
 = 2.297 + 1.149 + 1.149 = 4.595

 59

DSact = 20.536 + 4.595 = 25.131

Note: Figure 4.4 contains multiple data streams with EXTERNAL markings (i.e.,

actual_course, actual_altitude, rudder_status, elevator_status, course_command, and

altitude_command). Those data streams were counted in the top-level structure and are

not counted a second time in the substructure. Subsequently, Figure 4.5 contains two

hyperedges (i.e. actual_course, and actual_altitude); they are each counted as one output

data stream and counted as two separate input data streams.

This example provides an accurate measurement of complexity using composite

operators. Therefore, when composite operators are used in a PSDL model it is necessary

to calculate the complexity of each diagram and sum the values to obtain the complexity

of the actual system. When no composite operators are used, the complexity of the

system is actually represented as the complexity of the top-level diagram (i.e., DSact =

DSmin).

Figure 4.2 – Fish Farm Control System I, and Figure 4.3 – Fish Farm Control

System II, are two systems that use no composite operators. Their complexities were also

calculated and are provided in Table 5.6 for comparison. The Autopilot Control System

is the most complex of the three at 25.131. Part of an intuitive evaluation of prototype

systems requires some understanding of the system requirements; those requirements

indicate what properties are built into the operators and data streams. Without it, the

numbers may not represent your intuitive understanding of the system. We stated in

Chapter IV, it is not enough to simply examine the diagram especially when the actual

complexities are so close to one another.

FIGURE SYSTEM COMPLEXITY (DS)
4.1/4.4 Autopilot Control System 25.131

4.2 Fish Farm Control System I 24.973
4.3 Fish Farm Control System II 20.543

Table 5.6. Calculated Complexities of Three Systems.

E. SUMMARY

Horst Zuse and Karin Drabe [Ref. 16] developed a broad software application

called Zuse/Drabe Measure Information System (ZD-MIS) that contains an extensive

 60

database of software measures. Figures 5.3 and 5.4 are screen shots from ZD-MIS. The

application contains multiple tutorials designed to educate the user on software measures

and then walk them through a decision process to choose measures that fit the situation,

code and data structure. Measures are not restricted to complexity. In the database, you

will find ways to measure size, defect density, structure and others. You are free to

choose from the database or to tailor measures based on some hybrid. PSDL now has a

hybrid measure due, in part, to ZD-MIS.

When building a hybrid measure it is essential units match and that nothing is lost

empirically or qualitatively by combining measures. Empirical understanding is

undoubtedly the most important factor in defining a measurement of any kind. It was

discussed at length throughout these chapters. The complexity measure defined as the

Dupont Scale provides a comprehensive account of PSDL computational models

represented as an augmented graph in CAPS. This measure was specifically kept as

uncomplicated as possible to assist future research in this area and to assist in Major

Michael Murrah’s Modified Risk Model.

The simplicity of this measure should not be regarded as inconclusive. It is quite

possible that further research will yield additional complexity methods or models.

However, the application of other factors, functions or considerations; applied to a base

equation (i.e, Equation 5.12), will only change the scale of the measurements, that which

is considered to be low, medium or high complexity. When an equation (i.e., Equation

5.12) provides a mapping of an empirical relation to a formal relation (i.e. a

homomorphism), it provides an accurate basis of understanding. Moreover, it fulfills

what needed to be learned from the measurement and what goals were set out to be

accomplished.

 61

Figure 5.3. ZD-MIS Homepage.

Figure 5.4. Selection Criteria Page of ZD-MIS.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

VI. FUTURE RESEARCH AND CONSIDERATIONS

This thesis was an effort to validate or refine the complexity measure of Nogueira

[Ref. 10]. In doing so, the lack of time left me with some open questions that should be

explored as future research and/or considerations.

• The weighting tables should be refined to remove conditions that cannot
exist in PSDL (eg., it is not possible to have a type operator represented as
an External System & Composite – ES & CO).

• My method of developing the weights was only one such method. Others
may exist.

• Proof of the equation, possibly by induction.

• Will the use of composite operators lessen the complexity of DSmax by a
constant factor? If so, the measurement could be calculated entirely from
an expanded PSDL source file.

• Using multiple projects and real world examples, validate the measure and
define a scale for low, medium and high complexity. It may also be
possible to develop a scale using the relational properties of reflexivity,
anti-symmetry and transitivity applicable to sets and ordered pairs (i.e.,
graph theory).

• Build a parser for PSDL files that calculates the complexity.

• Build an analyzer in the CAPS environment that automatically calculates
the complexity while developing the prototype.

• Consider what effect hyperedges, which represent global variables, has on
the complexity. Hyperedges are not counted multiple times in this
measure. For example, there are measures that take into consideration the
number of global variables shared by subordinate modules (See
Bibliography under Bowles). Thismay provide some answers on how to
handle hyperedges represented in PSDL substructures.

• To what degree will the true semantics behind hyperedges (see Figure
6.1) undoubtedly increase the complexity number? The complexity
measure under the Dupont Scale represents complexity on a ratio scale. If
the increase in complexity due to hyperedges, is a constant, it may simply
redefine a low, medium, high scaling. For example, the Autopilot Control
System has a complexity of 25.131 on the Dupont Scale; if its hyperedges
are considered differently the number may rise to 40.265. As more
projects are evaluated, and a scale defined, the Autopilot Control System
may come out to be low complexity. That empirical understanding will
not change no matter if the number is 25.131 or 40.265.

 64

A

D C

Be1

e2

e1

A

D C

Be1

e2

e1

e1 e1

Syntax Semantics

Edge e1 A B Edge e1 {A, C} {B,D}

Edge e1 C D Edge e2 {B} {C}

Edge e2 B C

Figure 6.1. PSDL Syntax vs. Semantics.

Figure 6.1 represents the syntax and semantics of hyperedges in PSDL. A, B, C,

D all represent nodes and e1 and e2 represent edges, e1 being a hyperedge. Both

diagrams are representative of the same system. The effect of hyperedges is implicit

under Syntax and explicit under Semantics. The diagram under Syntax is what you might

expect to see as the dataflow diagram from CAPS, and below it, the PSDL code. Each

edge gets listed the number of times it connects operators. The Syntax represents the

empirical understanding.

The semantics are quite different. For e1 there are two producers, A and C and

two consumers, B and D, labeled as sets. Because A produces the data for e1 it has an

effect on both consumers, B and D; likewise for producer C. The Semantics diagram

shows this relationship. It contains two additional e1 edges that are only implicitly

defined in the actual diagram. The difference in complexity of this particular example

ends up being a factor of two. That means semantically, the system is twice as complex

as you would empirically expect. Without further investigation, I am not convinced this

an accurate representation of the complexity.

Additionally, to handle hyperedges based on their semantics violates Axiom 3.10:

 65

Most people cannot manipulate more than a small amount of information
at the same time unless there are visual tools available to assist them.
Therefore, it is of importance to be able to visualize the process of
measurement. It should be easy to present a pictorial representation of the
data object and to illustrate graphically the process of application of the
metric to a particular data structure.

The explicit representation of the semantics is not intuitive based solely on the

dataflow diagram or the PSDL code. It requires further investigation that cannot be

easily resolved without redrawing the diagram or a more detailed parser/analyzer.

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

APPENDIX A. COMPLEXITY METRICS FOR DCAPS

SW4510 DCAPS
Complexity Metrics for DCAPS

Final Project Report

26 September 2001

CPT(P) Mike Murrah
MAJ Joe Dupont
LTC Joe Puett

 68

TABLE OF CONTENTS

Section Title Pg

 Cover Sheet 67

 Table of Contents 68

I Introduction 69

II Project Scope 74

III Methodology 75

IV Nogueira’s Complexity Measure 76

V McCabe’s Complexity Measure 78

VI Complexity Comparison 80

VII Conclusions 83

VIII List of Annexes 84

Annex A References 85

Annex B PSDL Analyzer Algorithm 86

Annex C PSDL Analyzer Tool 90

Annex D MS Visual Basic Source Code 95

Annex E MS Excel Visual Basic for Applications 102

Annex F Sample PSDL Graphs and Expanded Source Files 104

 69

I. INTRODUCTION

A. Project Aim. Software engineers have long sought to identify, quantify,
understand, and control specific aspects of software that directly impact
the successful development of software projects. "Size" and "complexity"
of software are generally thought to be two of these key aspects; although,
there is still considerable debate in the software engineering community
as to what is meant by and how to measure “Software Size” and “Software
Complexity.” We only have to look back at Fredrick Brook’s seminal work
“The Mythical Man-Month” [BROO75] to provide an early analysis of the
difficulty in successfully completing a large, complex software project. He
outlines the paradox in trying to produce reliable software that is both
large and complex because of the many interactions required by an ever
increasing number of software modules and by an ever increasing number
of people required to produce those modules.

While software size and complexity have been extensively researched,
there are still no conclusive complexity metrics that can be calculated very
early in the software development cycle that produce reliable measures of
the eventual complexity of the delivered software. Even Function Point
analysis (while calculable early) has several weaknesses (see Section I.D
below). Nogueira [NOGU00] performed one initial investigation of an early
calculable complexity measure as an input to his project risk model.
However, questions remain about the validity of this measure (see
sections IV, VI, & VII). Being able to produce a reliable measure of the
eventual complexity of the software early in the software’s design
(perhaps during the prototyping phase) is of considerable interest. Early
(rather than later) in the development cycle, a software designer has the
greatest flexibility in modifying the software design to achieve desired
program objectives of cost, time, and functionality. Thus, investigating
how and when to obtain early measures of complexity is of significant
importance. This project seeks to continue such an investigation.

The specific aim of this project is to examine some existing complexity
measures and determine their applicability when applied to the Distributed
Computer Aided Prototyping System (DCAPS) environment. Specifically,
we will:

• Develop a Prototype System Description Language (PSDL)

Analyzer Tool which will calculate side-by-side complexity
measures for Nogueira’s Large Grain Complexity (LGC) [NOGU00]
and McCabe’s Cyclomatic Complexity metric (MCC) [WATS97]
(see Appendices B through E).

• Compare the LGC & MCC complexities of several available PSDL
models (see Section VI).

 70

• Attempt to arrive at some conclusions regarding what complexity
measures might be best suited for the DCAPS environment (see
Section VII).

B. Computer Aided Prototyping System (CAPS). Luqi and Ketabchi
introduced CAPS in 1988 [LUQI88] as a means of improving embedded
real-time software development thorough the use of tools supporting a two
phased approach of rapid prototyping via specification and reusable
components followed by automatic program generation. CAPS itself is
supported by a specification language known as the Prototype System
Description Language (PSDL).

A CAPS prototype is initially instantiated as an augmented dataflow
diagram that is then translated into PSDL so that executable prototypes
can be produced. Cordeiro [CORD00] summarizes the support provided
by CAPS and the CAPS Prototyping Process as follows:

“CAPS provides the following kinds of support to the prototype
designer:

1) Timing feasibility checking via the scheduler,
2) Consistency checking and some automated assistance for

project planning, scheduling, designer task assignment,
and project completion date estimation via the Evolution
Control System,

3) Design completion via the editors, and
4) Computer-aided software reuse via the software base.

The basic CAPS Prototyping Process:

1) Based on requirements, design (or modify) the dataflow
diagram for the system.

2) Assign all appropriate timing and control constraints to the
prototype operators. Assign latencies to data streams (if
required).

3) Assign data types to all data streams.
4) Find (in the software base) or build an implementation

module for each user-defined data type and each atomic
operator. Modules taken from the software base can be
modified after retrieval to suit individual needs.

5) Build the prototype's user-interface (if required).
6) Translate the CAPS-generated (and user-augmented)

PSDL program into (a portion of) the Ada supervisor
module.

7) Run the CAPS scheduler to generate the static and
dynamic schedules. This completes the prototype's Ada
supervisor module.

 71

8) Compile the prototype. Note: for successful compilation,
particular attention must be paid to the formal parameters
of atomic operator implementation procedures created in
step 4.

9) Execute, evaluate and modify (if appropriate) the
prototype and/or the requirements.

10) Return to Step 1 if prototype modification is required.”

The following is a summary of the PSDL Computational Model as
described by Luqi, Berzins, and Yeh in [LUQI88a]:

PSDL is based on a computational model containing OPERATORS that
communicate via DATA STREAMS, where each stream carries values of
a fixed abstract data type. PSDL contains several pre-defined Abstract
Data Types (e.g. float, integer, boolean, etc) as well as providing the user
the ability to establish user defined Abstract Data Types. Operators can
only gain access to other operators when they are connected via data
streams. The PSDL computational model is formally represented as an
augmented graph:

G = (V,E,T(v),C(v))

where:
• V is a set of vertices (v)
• E is a set of edges
• T(v) is the set of timing constraints for each vertex v
• C(v) is the set of control constraints for each vertex v

Each vertex represents an operator and each edge represents a data
stream (see Annex F for sample PSDL graphs).

Our investigation to determine appropriate complexity measures for
software prototypes relied on calculating the complexity of the Software
Prototype as it was generated in PSDL. Both LGC and MCC were
calculated by determining the complexity of the underlying augmented
graph represented by operators and data streams.

C. Software Size. Calculating complexity by itself is meaningless. For a
particular metric to have meaning, it must be related to the production
factors associated with software development (e.g. time to develop,
resources required, functionality produced). Given the limited time of our
investigation, we realized that we would not be able to directly relate our
complexity measure against such a production factor. Instead, we chose
to relate "complexity" against “Software Size”, a parameter that has been
demonstrated to directly bear on the production factors of software

 72

development [PRES01]. However, relating “complexity” to “size”
introduces its own set of inaccuracies and ambiguities. What exactly is
meant by “Software Size?” There are numerous opinions on the issue –
for instance, Whitmire [WHIT97] as paraphrased in [PRES01] identifies
four different views that can be taken regarding what size means in Object
Oriented programming:

"Size is defined in terms of four views: population, volume, length,
and functionality. Population is measured by taking a static count
of OO entities such as classes or operations. Volume measures
are identical to population measures but are collected dynamically,
-- at a given instant of time. Length is a measure of a chain of
interconnected design elements (e.g., the depth of an inheritance
tree is a measure of length). Functionality metrics provide an
indirect indication of the value delivered to the customer by an OO
application."

For the purposes of our investigation, we decided to use the
number of Lines of Code (LOC) of the expanded PSDL file for our
comparison metric related to "Software Size." We were confident
that this metric (given a sufficiently large set of PSDL models
turned into actual delivered software) would correlate directly with
any of the production factors associated software development
(e.g. time to develop, resources required, functionality produced).

D. Complexity. Because Software Complexity forms the basis for our

investigation, some background on previous research efforts to obtain
complexity metrics is in order.

One main and most successful areas of complexity research focused on
functional complexity calculated through “Function Points.” Nogueira
pointed out in his dissertation [NOGU00] that: “Functional complexity has
been studied for years because it correlates highly with effort and risk...
Note that functional complexity includes two notions of complexity. First,
there is the notion of relational complexity describing the mechanistic view
of the system. This notion can be objectively measured. Second, there is a
rational notion of complexity that is subjective and depends on cognitive
limitations of the observer.”

Functional complexity metrics were first introduced by Albrecht [ALBR79]
& [ALBR83] and have been widely used because:

1) they are an early metric and can be calculated during the design
phases of the software (as early as the prototyping phase as
long as the complete system is being prototyped),

 73

2) they are easy to calculate by simply summing 5 parameters,
and

3) they can be easily related to LOC

Calculating Function Points is fairly straightforward. Simply count the
number of inputs, outputs, queries, files, and system interfaces required in
the system. Classify each as either simple, medium or complex.
Depending on the parameter and its complexity, the count is multiplied by
a weight factor. Table 1 presents the template for the calculation.

Table 1: Function Points Calculation [ALBR83] as presented in [NOGU00]

 Simple Weight Medium Weight Complex Weight Total
Inputs (* 3) + (* 4) + (* 6) =
Outputs (* 4) + (* 5) + (* 7) =
Queries (* 3) + (* 4) + (* 6) =
Files (* 7) + (* 10) + (* 15) =
Interfaces (* 5) + (* 7) + (* 10) =
 NAFP = Σ

The result of the total is called Non-Adjusted Function Points (NAFP).
Next, the user answers 14 questions on a scale of 0 to 5 (0=unimportant
to 5=absolutely essential). These 14 questions are [PRES01]:

1) Does the system require reliable backup and recovery?
2) Are data communications required?
3) Are there distributed processing functions?
4) Is performance critical?
5) Will the system run in an existing, heavily utilized opera5ional

environment?
6) Does the system require on-line data entry?
7) Does the on-line data entry require the input transaction to be

built over multiple screens or operations?
8) Are the master files updated on-line?
9) Are the inputs, outputs, files or inquiries complex?
10) Is the internal processing complex?
11) Is the code designed to be reusable?
12) Are conversion and installation included in the design?
13) Is the system designed for multiple installations in different

organizations?
14) Is the application designed to facilitate change and ease of use

by the user?

Finally the Function Points are calculated by the formula:

 74

FP = NAFP * (0.65 + 0.01 * Σ Fi)
where NAFP is the non adjusted Function points
 Fi is the answers to each of the fourteen questions

Nogueira [NOGU00] points out that while this approach is attractive,
approach, it has many weaknesses: 1) the metric was derived from a
study of MIS projects in the seventies and does not account for recursive
functions, reuse, inheritance, communication by messages and
polymorphism, 2) languages have evolved and differ a lot from the
COBOL of the seventies, and 3) programming styles have suffered a
dramatic change that is not reflected in the metric.

Kemerer [KEME93] and Kitchenham [KITC93] & [KITC97] also additional
shortcomings that make them unsuitable for our investigation:

1) Individual function point elements lack independence
2) Many function point elements were not related to effort required

to produce the software.
3) Prediction metrics based on inputs and outputs provided as

good a predictor as Function Points.
4) Prediction metrics based on the number of files and the number

of outputs was only slightly worse that Function Points.

Additionally, function points would be difficult to calculate within CAPS
because many of the inputs are unknown at that stage of prototyping
(e.g. queries, files). So, even though Function Points remain as the most
common prediction metric, our investigation requires a different
approach.

II. PROJECT SCOPE.

A. Scope. Because of the limited length of time and numbers of people

available to us to work on this project we limited our scope:

1) We focused our investigation on only two complexity measures
McCabe's and Nogueira's. After briefly considering Function Point
analysis (as in section I.D above) we decided that it would not
provide a meaningful comparison. We also discarded Halstead's
Complexity measure because its inputs and outputs were not
applicable to the CAPS environment.

2) We compared McCabe's Cyclomatic Complexity Measure &
Nogueira's Large Grain Complexity Measure against LOC of

 75

expanded PSDL files instead of comparing the metrics against final
production factors of the delivered code.

3) We used a limited number of expanded PSDL files available from
previous CAPS projects.

B. Possible sources of error based on Scope. These limitations on scope
might limit the accuracy of our conclusions in the following ways:

1) By only examining McCabe's & Nogueira's complexity metrics in

detail, we can make no conclusions about the validity of other
complexity metrics.

2) By relating the complexity metrics to LOC of the prototype, we are
introducing inaccuracies if they are further extrapolated to the
impact on software production factors. A better approach would
have been to directly compare the complexity measures against the
actual effort, budget, time, and functionality produced in delivered
software.

3) Because we used a "convenience sample" of available PSDL files
from student projects, we can be fairly certain that these data points
are not independent (since they were produced by users of similar
abilities, within similar time scales, on projects of similar size).
Thus, the applicability of our conclusions to the entire possible
range of projects for which CAPS may be used is not as strong as it
would be had we had a larger and more diverse sample set.

III. METHODOLOGY.

A. Overview. Our team applied the following methodology to this project:

1) Research various complexity measures (see sections I, IV, and V).
2) Identify complexity measures which can be calculated within a

DCAPS environment (see sections I, IV, and V)
3) Replicate Nogueira's PSDL Complexity analyzer [NOGU00] (see

appendices B to E).
4) Improve the PSDL Complexity Analyzer to include new complexity

measures (see appendices B to E).
5) Identify numerous candidate CAPS projects and calculate their

complexity metrics.
6) Perform a comparison of complexity metrics based on the

sample(see sections VI and VII).

B. Shortcomings. Because of the limitations required by the scope of this
project (see section II above), we discovered the following shortcomings of
our methodology:

 76

1) We were only able to investigate a limited number of complexity
metrics (Nogueira's, McCabe's, Function Points, Halstead's). Of
these, we only fully investigated Nogueira's and McCabe's.

2) Replicating Nogueira's analyzer tool proved more difficult than first
anticipated because the code of the tool was not available and the
tool (as presented in his dissertation) produced invalid results
based on his LGC formula.

3) The number and variety of PSDL files available for comparison
were severely limited. Perhaps the greatest criticism of our work
stems from the lack of independence of this sample set. We found
it impossible to make strong conclusions about the applicability of
the complexity measures against the entire population of possible
CAPS projects because our sample set was of such a small cross-
section of possibilities (both in size and function).

4) Our comparison was only between metrics of prototypes and not
against the production factors of actual, delivered software. Given
a lot more time and resources a better approach would have been
to compare the early complexity measures against actual
production factors (development time, effort, cost, functionality) of
fully delivered software.

IV. NOGUEIRA’S COMPLEXITY MEASURE.

A. Background. Nogueira's Large Grain Complexity metric [NOGU00]

emphasizes the "relational" notion of complexity. A relational complexity
of an object is a function of the relationships among the components of the
object. Meyers [MYER76] identified three factors in measuring complexity
of Object Oriented systems:
• Independence: The independence of each component can reduce

the complexity of the system if the components are a partition of the
system (high cohesion, low coupling).

• Hierarchy: Hierarchical structures allow the stratification of the
system in different layers of abstraction.

• Explicit communication: The components should communicate with
explicit protocols avoiding any hidden side effects.

B. Metrics for Complexity. While there are a number of reasons why a

particular software component might fail, complexity of the component is
obviously a significant contributing factor. As Brooks pointed out
[BROO76], complexity also directly impacts the length of time required to
produce the software and is directly tied to whether the project can be
completed at all. Thus, Nogeria focused a portion of his investigation of
"risk" into trying quantify an early measure of software complexity. He
chose to attempt to measure this complexity at the prototyping stage.

 77

He proved that the specifications written in PSDL can be analyzed to
compute their complexity. As discussed above (section I.C), CAPS and
PSDL rely on the following: types, operators, data streams and
constraints. Types are declarations of abstract data types required for the
system. Operators and data streams are the components of a dataflow
graph. Finally, constraints represent the real-time constraints that the
system must support. All of these combined can be represented in an
augmented graph from which the complexity can be calculated.

C. LGC. Nogueira identified two complexity metrics for PSDL: the Fine

Granularity Complexity Metric (FGC), and the Large Granularity
Complexity Metric (LGC). He chose to compute two different metrics
because they indicate two classes of threats when considering complexity
from a risk viewpoint. First, he felt that it was important that a software
designer be cognizant of operators that are too complex. High complexity
on an operator could be corrected by further decomposition. LGC satisfied
his need for a metric that computes the total complexity of the system.

Nogueira's FGC expresses the relational complexity of each operator in
the PSDL system model. It is calculated by summing the inputs and
outputs of all data streams associated with the operator:

FGC = fan-in + fan-out

Initially, the PSDL Analyzer tool we developed calculated FGC for each
operator (see Annex C). However, as our investigation progressed, we
eventually removed this functionality because FGC (as intended) provided
little information about overall system complexity and thus, was counter to
our research goal. We were able to confirm Nogueira's results related to
calculating FGC from PSDL files, although the application of the metric
remains subjective (i.e. when is FGC too big, when is it just right?).

Nogueira's LGC expresses the relational complexity of the system as a
function of the number of operators (O), data streams (D), and types (T).

 LGC = O + D + T

Within CAPS, system models contain operators that can be layered in a
hierarchy. In order to take account of the relational complexity of the
entire system, LGC must be calculated by using a flattened hierarchy that
contains only leaf nodes. This is accomplished by calculating LGC from
the "expanded" PSDL file which fully expands all operators which can be
decomposed (Annex B further explains what an expanded PSDL file is
and why it is used in the analyzer).

 78

Unfortunately, Nogueira does not provide any explanation related to the
logic behind the derivation of his LGC equation. It makes sense that he
somehow account for the number of operators and number of data
steams, but why should these values be additive? A ratio between the
values would provide a better view to the complexity. Also, since data
streams are types, why does he add types to the equation a second time?
The overall effect is that his LGC metric will continue to grow as system
size increases (as system size becomes larger, LGC becomes larger).
Nogueira's LGC metric cannot account for a large, yet relatively simple
system. A second shortcoming deals with adding types (T) to the
equation. Logically, a system which has a large number of instantiated
types (large D) but a small number of declared abstract data types (small
T) is less complex than a system with large number of types (large T)
which are each only instantiated once (large D). Simply adding T to the
equation does not account for this relationship. Again a ratio between
instantiated types and declared types would have been a better way in
which to calculate complexity.

In summarizing Nogueira's LGC metric, it seems that a better relative
measure of complexity would have been to establish a ratio between the
data-streams and operators and a second ratio between the number of
declared types and instantiated data-streams. Thus, a better equation
may have been:

LGC = w1(D/O) + w2(D/T)

where wi are weights associated with the complexity factors

Unfortunately, we did not have time to investigate such a relationship,
determine values for the weights, and conclude whether or not such an
equation provides a better metric for complexity. Such an investigation
was beyond the scope of our project. However, it is an area that provides
promise for future research.

V. McCABE’S COMPLEXITY MEASURE.

A. McCabe and Watson provide a good overview of McCabe's complexity
metric in a fairly recent NIST special report [WATS96]. There they use
control flow graphs to describe the logic structure of software modules.
They define a module as a single function or subroutine (in typical
languages) that has a single entry and exit point, and is able to be used as
a design component via a call/return mechanism. They use nodes to
represent computational statements or expressions, and edges represent
the transfer of control between nodes.

B. Cyclomatic complexity, v(G). Cyclomatic complexity is defined for each

module to be:

 79

e - n + 2
 where
 e = the number of edges and
 n = the number of nodes in the control flow graph

Cyclomatic complexity is known as v(G), where v refers to the cyclomatic
number in graph theory and G indicates that the complexity is a function of
the graph G. Cyclomatic complexity is a measure of the number of
independent paths that exist in a strongly connected, undirected graph
(recall that a strongly connected graph is one in which each node is
reachable from every other node). It is precisely the minimum number of
paths that can, in (linear) combination, generate all possible paths through
the module.

It is easy to see the value of cyclomatic complexity for testing of modules.
Since the complexity number equals the number of independent paths
through the module, it also represents the number of test cases that
should be developed to ensure the proper functioning of the module (at
least one test case per independent control flow path).

Normally, the cyclomatic number in graph theory is defined as e - n + 1.
But McCabe & Watson point out that program control flow graphs are not
strongly connected, but can become strongly connected when a "virtual-
edge" is added connecting the exit node to the entry node. Thus, the
cyclomatic complexity definition for program control flow graphs is derived
from the cyclomatic number formula by simply adding one to represent the
contribution of the virtual edge.

For our investigation of McCabe's Cyclomatic Complexity metric on CAPS
augmented graphs, we liberally applied the same equation and logic. We
ignored the directional nature of the data streams, treating directional
hyperedges as individual undirected edges and added a virtual edge from
the output node to the input node.

C. Metric Range. McCabe established a range of values for what Cyclomatic
complexity should be:

Complexity Risk
1-10 A simple program without much risk
11-20 More complex, moderate risk
21-50 Complex, high risk
> 50 Untestable, very high risk

 80

He stated that: "Overly complex modules are more prone to error, are
harder to understand, are harder to test, and are harder to modify.
Deliberately limiting complexity at all stages of software development, for
example as a departmental standard, helps avoid the pitfalls associated
with high complexity software."

For the purposes of our investigation, limitations on the range of values for
cyclomatic complexity had little value. Our CAPS graphs were not
organized as separate modules (although a line of future research might
be to examine the benefits of organizing the prototype into decomposable
modules of specific size). Thus we were unconcerned with the value of
MCC, only with its relative relationship with LOC.

Because the equation for MCC is subtractive [MCC = e - n + 2], we can
expect there to be more independence of MCC to LOC than there was
with LGC. However, there should not be total independence because as
node are added to a diagram there will continue to be multiple edges
added. Thus as n → 8 we find that LOC → 8 , (e - n) → 8 , and thus
MCC → 8 . Ideally, we would want a metric were Complexity could stay
constant regardless of LOC.

VI. COMPLEXITY COMPARISON.

A. Appendices B through E detail the development of a PSDL analyzer used

to calculate complexity of available PSDL files. Annex F provides some
sample analysis of 3 of the 30+ files we used in our research. After
calculating the LGC and MCC for each file we performed a data
comparison to identify any correlations.

B. At first glance, Chart 1 (below) gives you the impression that there is a
linear relationship between lines of code and complexity measures.

 81

y = 0.0094x + 6.0552

y = 0.0144x + 24.354

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000

Lines of Code

C
o

m
p

le
xi

ty

LGC

MCC

Linear (MCC)

Linear (LGC)

Chart 1: LGC and MCC Plotted against LOC

There is a clear indication that the complexity greatly increases above 1000 lines
of code (LOC). Additionally, the fact that both linear trend lines have
approximately that same slope, as well as, the similar peaks and valleys shows a
correlation between Nogueira’s Large Grain Complexity (LGC) measure and
McCabe’s Cyclomatic Complexity (MCC) measure. Unfortunately, we don’t have
a clear depiction in this chart because we only have three values in the upper
limits. Those values aren’t a good representation for larger programs. We do
have sufficient data for lines of code less than 750. Changing the scale a bit and
dropping the upper values (Chart 2) there is a clearer view of any correlation
between the complexity values. The peaks and valleys are equivalent. Note that
the slope of the MCC trend line is half that of the LGC trend line. This matches
our analysis in section V that predicted that MCC would be more independent of
LOC than was LGC, but that both would continue to grow as LOC increased.

 82

y = 0.012x + 5.5328

y = 0.0218x + 22.106

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

0 100 200 300 400 500 600 700 800

Lines of Code

C
o

m
p

le
xi

ty LGC

MCC

Linear (MCC)

Linear (LGC)

Chart 2: LGC and MCC Plotted against LOC (without last 3 data points)

C. Going yet another step further, (Chart 3) a plot of LGC vs. MCC
(Nogueira’s Model vs Cyclomatic Complexity Model) shows no injective
relationship between the two measures.

 83

Complexity Comparison

y = 0.2937x + 0.5524

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60

LGC

M
C

C

Chart 3: MCC compared to LGC

You will notice that Nogueira’s numbers tend to increase over a greater
range than the cyclomatic numbers. Adding a linear trend line shows this
inaccuracy through its fairly steep slope. A conclusion that is drawn here is
that Nogueira’s Model is more proportional to total LOC vs. the Cyclomatic
Model (again matching our prediction in section V).

VII. CONCLUSIONS.

A. It is very difficult to draw any immediate conclusions that Nogueira’s
Complexity Model is any better or worse than the widely used and
validated Cyclomatic Complexity Model. First, we see some correlation
between the two yet Nogueira’s model is impacted more by LOC. The
sporadic values over the entire range of LOC and the fairly flat slopes
indicate there shouldn’t be any relationship with LOC. That is to be
expected. At first thought you would conclude a program is more complex
if it is bigger but you must look at the definitions of complexity. Those
definitions use unique data types, operators and edges as their operands;
something that is independent of LOC. Secondly, we used a very loose
interpretation of MCC to assist us in analyzing PSDL code. We directly
applied McCabe’s Model to the graphs developed by CAPS. Another
interpretation of the Model could have had different results.

B. In summarizing both Nogueira's LGC metric and McCabe's MCC metric, it

appears that neither is truly representative of a complexity metric that is

 84

independent of program size. Such an independent metric would best suit
our needs during prototyping because it would allow us to isolate and
correct overly complex portions of the design while ignoring portions that
are that are simple. Future work is needed to identify such a metric.

C. Future Research. As a start, it might be worth investigating the metric
proposed in section IV:

LGC = w1(D/O) + w2(D/T)

where wi are weights associated with the complexity factors

Such a metric might prove to be less dependent of LOC than are either
Nogueira's LGC and McCabe's MCC.

VIII. LIST OF ANNEXES.

 A. References.
 B. PSDL Analyzer Algorithm
 C. PSDL Analyzer Tool
 D. MS Visual Basic Source Code
 E. MS Excel Visual Basic for Applications
 F. Sample PSDL Graphs and Expanded Source Files

Annex A: References

 85

[ALBR79] Albrecht, A., Measuring Application Development Productivity. Proceedings
IBM, Oct 1979.

[ALBR83] Albrecht, A. and Gaffney, J., Software Function Source Lines of Code and
Development Effort Prediction, IEEE Transactions on Software Engineering, SE-9,
1983.

[BROO75] Brooks, F., The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley, 1975.

[CORD00] Cordeiro, M., Distributed Hard Real-Time Scheduling for a Software
Protoyping Environment, PhD Dissertation, Naval Postgraduate School, Sept 2000

[KEME93] Kemerer, C. Reliability of Function Points Measurements: A Field
Experiment. Communications of the ACM, Vol 36 No 2. 1993.

[KITC93] Kitchenham, B. and Dansal, K. Inter-item Correlations among Function
Points. First International Software metric Symposium. IEEE Computer Society press.
1993.

[KITC97] Kitchenham, B. and Linkman, S. Estimates, Uncertainty, and Risk. IEEE
Software. May-June 1997.

[LUQI88] Luqi and Ketabchi, M., A Computer-aided Protoyping System, IEEE Software,
1988.

[LUQI88a] Luqi, Berzins, V., and Yeh, R., A Prototyping Language for Real-Time
Software, IEEE Transactions on Software Engineering, Vol. 14, No. 10, Oct 1988.

[MYER76] Myers, G., Software Reliablity, John Wiley & Sons, 1976.

[NOGU00] Nogueira de León, J. C., A Formal Model for Risk Assessment in Software
Projects, PhD Dissertation, Naval Postgraduate School, Sept 2000.

[PRES01] Pressman, R. S., Software Engineering: A Practitioner's Approach, McGraw-
Hill Higher Education, 5th Edition, 2001.

[WHIT97] Whitmire, S., Object-Oriented Design Measurement, Wiley, 1997.

[WATS96] Watson, A. and McCabe, T., Structured Testing: A Testing Methodology
using the Cyclomatic Complexity Metric, NIST Special Publication 500-235, Sept 1996.

Annex B: PSDL Analyzer Algorithm

 86

Overview. The PSDL Analyzer Tool has been developed to quickly and
accurately perform analysis on an expanded PSDL file in order to obtain complexity
measures from an expanded PSDL file.

Four measures are extracted directly from the PSDL code: uniquely declared

data types, edges, vertices (operators), and lines of code. The analyzer accounts for
each of these measures by compiling a simple summation of each instance of the
measure under consideration.

Logic of the PSDL Analyzer Algorithm. An “expanded” PSDL source file

distinguishes itself from a “normal” PSDL source file by removing all of the operator
decompositions in the file and deriving an expanded “flattened” file. The fattened file
accounts for all operators with their accompanying data streams and data types. The
expanded PSDL source file is automatically generated from a translation function during
the operation of the CAPS prototyping software. The expanded PSDL source file can
be found in its default file location, a “temp” directory in the user’s directory structure.

The PSDL analyzer parses the expanded source file seeking out an

“OPERATOR” that is identical to the file name of the expanded PSDL source file. Once
this operator is accounted for, the analyzer begins to capture the occurrences of the
“STATES”, “VERTICES”, “EDGE”, and data type declarations obtained in the “DATA
STREAM” portion of the code. Apart from accounting for the total lines of code in the
file, the analyzer disregards the remaining code upon reaching “CONTROL
CONTRAINTS”. This unique combination of identifiers accurately provides the essential
information required to obtain the required measurement.

The following table is a subset of an expanded PSDL source file. The names of

the expanded file is “fishies.psdl”. The total lines of code in the file is 214 (the analyzer
does not account for lines in the files which are blank.) The portion of the code below is
only the portion that critical information is extracted. In the actual file, the subset of
code begins about line 120, for this example we are identifying the first line of code as
line 1.

Line 1 IMPLEMENTATION ADA get_feeding_time_82
Line 2 END
Line 3
Line 4 OPERATOR fishies_53
Line 5 SPECIFICATION
Line 6 STATES feed_schedule: feeding_times INITIALLY
Line 7 Empty
Line 8 STATES inlet_valve_position: float INITIALLY 0.0
Line 9 STATES drain_valve_position: float INITIALLY 0.0
Line 10 END
Line 11
Line 12 IMPLEMENTATION
Line 13 GRAPH
Line 14 VERTEX monitor_nh3_level_55: 80 MS
Line 15 VERTEX monitor_h2o_level_57: 80 MS
Line 16 VERTEX display_status_59: 300 MS
Line 17 VERTEX control_water_flow_61: 100 MS
Line 18 VERTEX monitor_o2_level_63: 80 MS

Annex B: PSDL Analyzer Algorithm

 87

Line 19 VERTEX adjust_inlet_65: 80 MS
Line 20 VERTEX adjust_drain_67: 80 MS
Line 21 VERTEX control_feeder_69: 100 MS
Line 22 VERTEX get_feeding_time_82
Line 23
Line 24 EDGE o2 monitor_o2_level_63 ->
Line 25 display_status_59
Line 26 EDGE h2o monitor_h2o_level_57 ->
Line 27 display_status_59
Line 28 EDGE nh3 monitor_nh3_level_55 ->
Line 29 display_status_59
Line 30 EDGE o2_status monitor_o2_level_63 ->
Line 31 control_water_flow_61
Line 32 EDGE nh3_status monitor_nh3_level_55 ->
Line 33 control_water_flow_61
Line 34 EDGE h2o_status monitor_h2o_level_57 ->
Line 35 control_water_flow_61
Line 36 EDGE activate_inlet control_water_flow_61 ->
Line 37 adjust_inlet_65
Line 38 EDGE activate_drain control_water_flow_61 ->
Line 39 adjust_drain_67
Line 40 EDGE inlet_setting adjust_inlet_65 ->
Line 41 display_status_59
Line 42 EDGE feeding control_feeder_69 ->
Line 43 display_status_59
Line 44 EDGE feed_schedule get_feeding_time_82 ->
Line 45 control_feeder_69
Line 46 EDGE inlet_valve_position adjust_inlet_65 ->
Line 47 adjust_inlet_65
Line 48 EDGE drain_setting adjust_drain_67 ->
Line 49 display_status_59
Line 50 EDGE drain_valve_position adjust_drain_67 ->
Line 51 adjust_drain_67
Line 52 EDGE feed_schedule get_feeding_time_82 ->
Line 53 get_feeding_time_82
Line 54
Line 55 DATA STREAM
Line 56 o2: float,
Line 57 h2o: float,
Line 58 nh3: float,
Line 59 o2_status: sensor_status,
Line 60 nh3_status: sensor_status,
Line 61 h2o_status: sensor_status,
Line 62 activate_inlet: change_valve,
Line 63 activate_drain: change_valve,
Line 64 inlet_setting: float,
Line 65 feeding: boolean,
Line 66 drain_setting: float
Line 67
Line 68 CONTROL CONSTRAINTS
Line 69 OPERATOR monitor_nh3_level_55
Line 70 PERIOD 1000 MS

Aside from counting the total lines of code in the PSDL file, line 4 is the first
instance where the analyzer begins to account for the operators, edges, and data types.
In line 4, the keyword “OPERATOR” is followed by the PSDL filename “fishies” (the
postfix “_53” is ignored). This tells the analyzer that the correct portion of code has
been encountered.

Annex B: PSDL Analyzer Algorithm

 88

In lines 6-9 the analyzer captures the declaration of the data types that are state
streams. During this portion of the code, the analyzer identified two unique data type
declarations: feeding_times (line 6) and float (lines 8 or 9). Notice that the declaration
of “float” is only accounted for one time.

In lines 14-22 the analyzer captures all of the vertices. For the purpose of this

documentation we take the liberty of using the words vertices and operators
interchangeably. The total vertices for “fishies.psdl” is nine.

Next the analyzer encounters the portion of the PSDL file that contains the edge

information. Lines 24-53 encompasses the edge information. The total edge count for
“fishies.psdl” is 15. All edges are accounted for. If a hyper-edge has a total of two
branches, then the analyzer documents this as two.

Finally, the analyzer enters a section of code that contains the data type

declarations. These are separate instances than the previously mentioned state
streams and must be accounted for. In this example, lines 56-66 declare additional
data types. There is a total of four unique declarations of data types in this section of
code. The simple type “float” is instantiated five times but is only declared once. The
abstract data type “sensor_status” is instantiated three times but only declared once.
“Change_valve” is instantiated twice and counted once. And finally, there is an
instantiation of a “boolean” that is only counted once.

The total number of uniquely declared data types then becomes five. Two were

identified during the “STATES” portion of the code (lines 6-9) and three additional ones
were identified during the previously mentioned portion of code. The table below
summarizes the data type declarations.

Line 6 feeding_times first occurrence
Line 8 float first occurrence
Line 9 float repeat (line 8)
Line 56 float repeat (line 8)
Line 57 float repeat (line 8)
Line 58 float repeat (line 8)
Line 59 sensor_status first occurrence
Line 60 sensor_status repeat (line 59)
Line 61 sensor_status repeat (line 59)
Line 62 change_valve first occurrence
Line 63 change_valve repeat (line 62)
Line 64 float repeat (line 8)
Line 65 boolean first occurrence
Line 66 float repeat (line 8)

The PSDL analyzer reaches the keywords “CONTROL CONTRAINTS” in line 68

and disregards any additional information it encounters.

Annex B: PSDL Analyzer Algorithm

 89

To summarize what the results from analyzing this example code, we obtain the

following:

Declared Data Types 5
Edges 15
Vertices 9
Lines of code 214

Figure B-1 is the graphical representation of the “fishies.psdl” file. The analyzer

does not utilize the PSDL graph, it’s only provided for visual aid in this document. From
figure 1 the reader can identify the nine vertices (operators) and the fifteen edges. The
graph displays the instantiations of the data types but in isolation does not yield the
uniquely declared data types.

Figure B-1. "fishies.psdl" diagram

Annex C: PSDL Analyzer Tool

 90

Overview. The PSDL analyzer tool automates the process of extracting the
uniquely declared data types, edges, vertices, and lines of code from an expanded
PSDL source file. Upon deriving this information, the tool sends the information to the
screen, displays the PSDL source code, and affords the user an opportunity to maintain
a record. In order to function correctly, a user must have the MS Excel analyzer file and
an expanded PSDL source file.

The MS Excel file that is delivered with this documentation is called

“PSDL_Analyzer_v3-0.xls”. The excel file contains an embedded executable file that
performs the parsing operation on the expanded PSDL file. A user opens the MS Excel
file, and then double-clicks the “Analyzer” icon to execute the parsing engine. Be sure
to enable all macros and update any links when prompted.

The PSDL analyzer can be operated in two modes: single-file and directory

mode. In the single-file mode, individual files are analyzed and the results are made
available to the user. In the directory mode, the user can select a directory containing
multiple expanded PSDL files, and the analyzer completes analysis on all of the files;
generating a log sheet.

Worksheet Orientation. Once the user opens the MS Excel file

“PSDL_Analyzer_v3-0.xls” the screen shot in the figure below will be displayed
(worksheet “PSDL Analyzer”). The actual data values will vary depending on the last
saved version of the MS Excel file. There exist two additional worksheets in this
workbook: “PSDL Code” and “Log Sheet”.

Users have the ability to view the results of the most recently analyzed expanded
PSDL file. This screen shows the results of the PSDL example “fishies.psdl”
demonstrated in the previous annex. The four measurements are displayed: unique
declared data types, edges, vertices, and lines of code (LOC). Additionally, the name is

Annex C: PSDL Analyzer Tool

 91

displayed of the PSDL file. Users have the ability to view each data type and vertices.
Select a “drop down” box to view the associated information from the parser.

There exists two command buttons and an embedded macro on the worksheet

“PSDL Analyzer”. One command button, “Log Results” takes the results from the most
recently executed analysis and places them into the “Log Sheet” worksheet. The
second command button, “Clear Log”, removes all entries from the “Log Sheet”
worksheet.

The embedded macro “Analyzer” initiates the analyzer engine. This engine

contains the algorithms necessary to parse the expanded PSDL files.

Finally, two calculations are completed and displays: Dr. Nogueira’s Large

Granular Complexity and a variation of the McCabe’s Cyclomatic Complexity.

Worksheet “PSDL Code”. When the parser analyzer is invoked, the current

PSDL file is read into the MS Excel worksheet and stored in the worksheet “PSDL
Code”. Upon each subsequent parser execution, the older PSDL file is removed and
replaced by the current file under analysis.

Worksheet “Log Sheet”. The MS Excel worksheet “Log Sheet” maintains a

historical log of the files that the analyzer has encountered. In the single-file mode,
users must invoke the “Log Results” command button to make an entry into the log. In
the directory-mode, entries are made automatically into the log sheet.

Log Sheet entries will continue to number in an ascending fashion until the

contents on the log sheet are cleared. This is completed by invoking the “Clear Log”
command button. Caution must be exercised when clearing the log. It is impossible to
recover a log once it has been removed. If a user requires removal of a single entry,
the user should do so in a manual fashion. Saving the MS Excel file also saves the log.

It is important not to destroy the layout of the log sheet. If it is inadvertently

augmented, use the following screen shot to re-establish the template.

Annex C: PSDL Analyzer Tool

 92

Analyzer Engine. The brains to the PSDL analyzer comes in the form of a

parser. The parser was written in MS Visual Basic and interacts with the opened MS
Excel file. Users must ensure that the MS Excel file is NOT in the design mode.
Double-click on the “Analyze” icon and allow the embedded executable to operate. The
following screen should become visible.

Users must interact with the PSDL Analyzer Engine in two ways. First, users
must indicate if they intend to analyze single files or whole directories and second,
users must establish two file associations.

Checking the box next to “Analyze Directory” tells the analyzer to evaluate an

entire directory. Leaving the box unchecked (the default), analyzes single files.

The “Files” menu selection is used to establish the file associations. Two file

associations must be established. The first file that is associated is the MS Excel file
(the analyzer). This is generally the MS Excel file that you already have open. Simply
traverse the directory structure until you located this file and selected it. You will
received an appropriate message. Only .xls and .psdl files are visible.

Annex C: PSDL Analyzer Tool

 93

The next task is to set the PSDL file. Again traverse the file structure and find

the appropriate PSDL file. When the file is selected, the parser carries out either a
single-file or directory analysis. A progress meter will give users an indication of the
amount of time to complete the action.

Complete the same procedures for a directory analysis. With “Analyze Directory”

checked, the parser begins to analyze the directory of the selected file.

Once the parser has completed, refer back to the MS Excel sheet to view the
results. If you were analyzing a complete directory, you will have an entry in the “Log
Sheet” for each PSDL file in the directory. If only single-file analysis was performed, no
entries were made to the “log sheet”. However, this can be easily accomplished by
invoking the “Log Results” command button. Switch to the “PSDL Code” worksheet to
reference the actual expanded PSDL source file.

Annex C: PSDL Analyzer Tool

 94

Known Issues.

The PSDL Analyzer is a working prototype that performs the required

functionality but lacks the robustness of production code. These known issues are
provided for the user to help minimize or alleviate frustration with its operation.

MS Excel File.

The MS Excel file must be open. The parser engine will not work properly if the

associated MS Excel file is not currently open.

When opening the MS Excel file, you must accept all macros and update links.

The MS Excel file’s worksheet can not be in the design mode. This will cause a

run-time error when the parser is activated.

The MS Excel workbook is not protected. Protecting the workbook creates a run-

time error. Users must observe care not to change the contents of the workbook’s cells.

Don’t move the worksheet template around. The parser is set up to recognize

certain cell reference in the MS Excel workbook. If a user desires to change any of the
workbook’s layout, you must use the “save as” feature in MS Excel and create a
duplicate file.

Even though excel file is open, you must still set it with the parser. This is to

allow users to create multiple copies of the MS Excel worksheet with different names
and store the files in multiple locations.

Parser Engine.

The parser only works correctly on expanded PSDL files. The parser can not

distinguish between valid and invalid files. In some cases the parser will execute
(seemingly) correct. But the results are not guaranteed unless the source file is
expanded.

There is a built in maximum limitation in the parser of 1000 operators and 1000

data types.

Excel file must be opened when running the parser.

Do not add files to the PSDL directory during analysis. The analyzer will not

refresh and recognize the added files. If a user needs to add a file in the directory, do
so and then manually refresh the directory tree.

Annex D: MS Visual Basic Source Code

 95

The MS Visual Basic Source Code used in the PSDL Analyzer Tool follows:

Private Sub Command1_Click(file_size)
' Initialize some variables
char_pos = 1
First_Word = ""
Second_Word = ""
Third_Word = ""
Vertex_Count = 0
Edge_Count = 0
ADT_Count = 0
User_Selected_File = Dir1.Path & "\" & File1.FileName
Const Max_Input = 1000
Lines_of_Code = 0
Excel_Line_Count = 1
right_place = False
still_there = False

 Dim fso As New FileSystemObject, txtfile, _
 fil1 As File, ts As TextStream
 Set fil1 = fso.GetFile(User_Selected_File)

 Dim MyXL As Object ' Variable to hold reference
 ' to Microsoft Excel.
 Set MyXL = GetObject(, "Excel.Application")
 Set MyXL = GetObject(Excel_Label.Caption)

 'Clear the PSDL text file
 MyXL.Worksheets("PSDL Code").Columns("A").Clear
 MyXL.Worksheets("PSDL Analyzer").Range("D3") = File1.FileName

 'This array will hold the ADT Names
 Dim ADT() As String
 Dim All_ADT(Max_Input) As String

 'This array will hold the Vertex Names
 Dim Vertex() As String
 Dim All_Vertex(Max_Input) As String

 'Work with the progress bar
 ProgressBar1.Max = file_size
 ProgressBar1.Min = 0

 ' Read the contents of the file.
 Set ts = fil1.OpenAsTextStream(ForReading)
 Do While Not ts.AtEndOfStream
 s = ts.ReadLine
 MyXL.Worksheets("PSDL Code").Range("A" & Excel_Line_Count) = s
 ProgressBar1.Value = Excel_Line_Count

 ' Pick off ANY blank characters
 Do While Mid(s, char_pos, 1) = " "
 char_pos = char_pos + 1

Annex D: MS Visual Basic Source Code

 96

 Loop

 ' --
 ' Pick off the words
 Do While char_pos <= Len(s)
 ' Get first Word
 If First_Word = "" Then
 Do While (Mid(s, char_pos, 1) <> " ") And _
 (Mid(s, char_pos, 1) <> "")
 First_Word = First_Word + Mid(s, char_pos, 1)
 char_pos = char_pos + 1
 Loop
 Lines_of_Code = Lines_of_Code + 1
 End If

 ' Pick off ANY blank characters
 Do While Mid(s, char_pos, 1) = " "
 char_pos = char_pos + 1
 Loop

 ' Get second Word
 If Second_Word = "" Then
 Do While (Mid(s, char_pos, 1) <> " ") And _
 (Mid(s, char_pos, 1) <> "")
 Second_Word = Second_Word + Mid(s, char_pos, 1)
 char_pos = char_pos + 1
 Loop
 End If

 ' Pick off ANY blank characters
 Do While Mid(s, char_pos, 1) = " "
 char_pos = char_pos + 1
 Loop

 ' Get third Word
 If Third_Word = "" Then
 Do While (Mid(s, char_pos, 1) <> " ") And _
 (Mid(s, char_pos, 1) <> "")
 Third_Word = Third_Word + Mid(s, char_pos, 1)
 char_pos = char_pos + 1
 Loop
 End If

 char_pos = char_pos + 1
 Loop
' --

 ' Now lets count the Verties, Edges, and Types

 file_name = LCase(Left(File1.FileName, Len(File1.FileName) - 5))

Annex D: MS Visual Basic Source Code

 97

 If First_Word = "OPERATOR" And LCase(Left(Second_Word, Len(file_name))) =
_
 file_name Then
 ' MsgBox "we are in the right place"
 right_place = True
 still_there = True
 End If

 If still_there And First_Word = "CONTROL" And Second_Word = "CONSTRAINTS"
Then
 ' MsgBox "we are leaving"
 right_place = False
 still_there = False
 End If

 If still_there Then
 Select Case First_Word

 ' Edges
 Case "EDGE"
 Edge_Count = Edge_Count + 1

 ' Count the Vertex
 Case "VERTEX"
 All_Vertex(Vertex_Count) = Second_Word
 Vertex_Count = Vertex_Count + 1
 ' Unique Declaration of Data Types in States
 Case "STATES"
 All_ADT(ADT_Count) = Third_Word
 ADT_Count = ADT_Count + 1

 ' Unique Declaration of Data Types in Data Stream

 End Select
 Select Case Right(First_Word, 1)
 Case ":"

 ' Some second words are delimited by ","
 ' Remove the ","
 If Right(Second_Word, 1) = "," Then
 Second_Word = Left(Second_Word, Len(Second_Word) - 1)
 End If

 All_ADT(ADT_Count) = Second_Word
 ADT_Count = ADT_Count + 1
 End Select
 End If

 ' reset the default values for the next text line.
 char_pos = 1
 First_Word = ""
 Second_Word = ""
 Third_Word = ""

Annex D: MS Visual Basic Source Code

 98

 Excel_Line_Count = Excel_Line_Count + 1
 MyXL.Worksheets("PSDL Analyzer").Range("A10") = Lines_of_Code
 Loop
 ts.Close
 ProgressBar1.Visible = False
 ' PSDL_Analyzer.WindowState = vbMinimized

' ---
' ---

' Display the Edge information

'Put edge total in Excel sheet
MyXL.Worksheets("PSDL Analyzer").Range("A8") = Edge_Count

' ---
' Display the ADT information

' ReDim ADT(ADT_Count)
Unique_ADT = All_ADT

For i = 0 To ADT_Count - 1
 temp = Unique_ADT(i)
 For J = i + 1 To ADT_Count - 1
 If Unique_ADT(J) = temp Then
 Unique_ADT(J) = ""
 End If
 Next J
Next i

For i = 0 To ADT_Count - 1
 If Unique_ADT(i) <> "" Then
 Count_ADT = Count_ADT + 1
 End If
Next i

ReDim ADT(Count_ADT)
Counter = 0

'Put ADT total in Excel sheet
MyXL.Worksheets("PSDL Analyzer").Range("A7") = Count_ADT
MyXL.Worksheets("PSDL Analyzer").Abstract_Data_Types.Clear

For i = 0 To ADT_Count - 1
 If Unique_ADT(i) <> "" Then
 ADT(Counter) = Unique_ADT(i)
 Counter = Counter + 1
 End If
Next i

For i = 0 To Count_ADT - 1
 MyXL.Worksheets("PSDL Analyzer").Abstract_Data_Types.AddItem ADT(i)

Annex D: MS Visual Basic Source Code

 99

Next i

' ---
' Display the Vertex Count

'Put Vertex total in Excel sheet
MyXL.Worksheets("PSDL Analyzer").Range("A9") = Vertex_Count
MyXL.Worksheets("PSDL Analyzer").Vertices.Clear

ReDim Vertex(Vertex_Count)
Vertex = All_Vertex

For i = 0 To Vertex_Count - 1
 MyXL.Worksheets("PSDL Analyzer").Vertices.AddItem Vertex(i)
 Next i
' ---

'Display Line of Code information on Excel sheet
MyXL.Worksheets("PSDL Analyzer").Range("A10") = Lines_of_Code

End Sub

Private Sub Dir1_Change()
 File1.Path = Dir1.Path
 If Excel_Label.Caption = "Not Set!!!" Then
 File1.Pattern = "*.xls"
 End If

End Sub

Private Sub Drive1_Change()
 Dir1.Path = Drive1.Drive
End Sub

Private Sub Exit_Command_Click()
End
End Sub

Private Sub File1_Click()

 If Right(File1.FileName, 3) = "xls" Then
 response = MsgBox("Set " & File1.FileName & _
 " to your Excel file?", vbYesNo, "File Selection")
 If response = vbYes Then ' User chose Yes.
 Excel_Label.Caption = Dir1.Path & "\" & File1.FileName
 File1.Pattern = "*.psdl"
 MsgBox "Done!"
 End If

 Else

 If Right(File1.FileName, 4) = "psdl" _
 And Excel_Label.Caption = "Not Set!!!" Then
 MsgBox "Please set Your Excel file FIRST"
 Else

Annex D: MS Visual Basic Source Code

 100

 If Right(File1.FileName, 4) = "psdl" _
 And Excel_Label.Caption <> "Not Set!!!" Then

 'response = MsgBox("Analyze " & File1.FileName & " (yes)" _
 & " or directory " & Dir1.Path & " (no)", vbYesNoCancel, "File
Selection")

 'If response = vbYes Then ' User wants a single file
 If Check1.Value = False Then

 file_size = Get_File_Size()
 Name_Label.Caption = "PSDL File: " & File1.FileName
 ProgressBar1.Visible = True
 ProgressBar1.Refresh
 Command1_Click (file_size)
 ' End If ' for the single file selection

 'If response = vbNo Then 'User wants the directory

Else
 ' File1.Pattern = "*.psdl"

 Dim MyXL As Object ' Variable to hold reference
 ' to Microsoft Excel.
 Set MyXL = GetObject(, "Excel.Application")
 Set MyXL = GetObject(Excel_Label.Caption)
 Check1.Value = False

 For i = 0 To File1.ListCount - 1
 File1.Selected(i) = False

 Next i

 For i = 0 To File1.ListCount - 1
 File1.Selected(i) = True
 'Check1.Value = True

 MyXL.Worksheets("PSDL Analyzer").checkbox2.Value = True
 Next i

 End If ' for the directory response

 End If ' for having a valid PSDL file

End If
End If

End Sub

Private Sub Get_File_Click()

File1.Visible = True
Dir1.Visible = True

Annex D: MS Visual Basic Source Code

 101

Drive1.Visible = True

End Sub

Function Get_File_Size()
Max_lines_of_Code = 0

 Dim fso As New FileSystemObject, txtfile, _
 fil2 As File, ts As TextStream
 Set fil2 = fso.GetFile(Dir1.Path & "\" & File1.FileName)
 Set ts = fil2.OpenAsTextStream(ForReading)
 Do While Not ts.AtEndOfStream
 s = ts.ReadLine
 Max_lines_of_Code = Max_lines_of_Code + 1
 Loop
 Get_File_Size = Max_lines_of_Code
 ts.Close
End Function

Private Sub Form_Load()
Excel_Flag = False
End Sub

Private Sub Set_File_Click()
Get_File_Click
End Sub

Annex E: MS Excel Visual Basic for Applications

 102

The MS Excel Visual Basic for Applications Source Code used in the PSDL
Analyzer Tool follows:

Private Sub Abstract_Data_Types_Change()

End Sub

Private Sub CheckBox2_Click()
If CheckBox2.Value = True Then
CheckBox2.Value = False
log_it
End If

End Sub

Private Sub Clear_Log_Click()
Log_Number = 5
response = MsgBox("WARNING! This will erase the contents of the log sheet.
Continue?", vbYesNo)
 If response = vbYes Then
 Do
 Worksheets("Log Sheet").Rows(Log_Number).Clear
 Log_Number = Log_Number + 1
 Loop While Worksheets("Log Sheet").Range("A" & Log_Number) <> ""
 End If
End Sub

Private Sub Single_Log_Click()
If Single_Log.Activate = True Then
MsgBox ("Logging " & Worksheets("PSDL Analyzer").Range("D3"))
log_it
End If
End Sub

Private Sub log_it()

Log_Number = 4

 Do
 Log_Number = Log_Number + 1
 Loop While Worksheets("Log Sheet").Range("A" & Log_Number) <> ""

If Worksheets("Log Sheet").Range("A" & Log_Number) = "" Then
 Worksheets("Log Sheet").Range("A" & Log_Number) = Log_Number - 4
 Worksheets("Log Sheet").Range("B" & Log_Number) = Worksheets("PSDL
Analyzer").Range("D3")
 Worksheets("Log Sheet").Range("C" & Log_Number) = Worksheets("PSDL
Analyzer").Range("A7")
 Worksheets("Log Sheet").Range("D" & Log_Number) = Worksheets("PSDL
Analyzer").Range("A8")
 Worksheets("Log Sheet").Range("E" & Log_Number) = Worksheets("PSDL
Analyzer").Range("A9")

Annex E: MS Excel Visual Basic for Applications

 103

 Worksheets("Log Sheet").Range("F" & Log_Number) = Worksheets("PSDL
Analyzer").Range("A10")
 Worksheets("Log Sheet").Range("G" & Log_Number) = Worksheets("PSDL
Analyzer").Range("A12")
 Worksheets("Log Sheet").Range("H" & Log_Number) = Worksheets("PSDL
Analyzer").Range("A13")
End If

End Sub

Annex F: Sample PSDL Graphs and Expanded Source Files

 104

This annex contains analysis of three sample PSDL files (fishies.psdl,
Lec_four_example_expanded.psdl, and bpowers_ffcs.psdl) used in our
complexity comparisons.

PSDL Graph for Fishies.psdl

Annex F: Sample PSDL Graphs and Expanded Source Files

 105

Expanded PSDL File for Fishies.psdl

TYPE change_valve
SPECIFICATION
END

IMPLEMENTATION ADA change_valve
END
TYPE feed_time
SPECIFICATION
END

IMPLEMENTATION ADA feed_time
END
TYPE feeding_times
SPECIFICATION
 OPERATOR add
 SPECIFICATION
 INPUT
 feed_schedule: feeding_times,
 new_time: feed_time
 OUTPUT
 feed_schedule: feeding_times
 END

 OPERATOR delete
 SPECIFICATION
 INPUT
 feed_schedule: feeding_times,
 new_time: feed_time
 OUTPUT
 feed_schedule: feeding_times
 END

 OPERATOR in_any
 SPECIFICATION
 INPUT
 current_time: military_time,
 feed_schedule: feeding_times
 OUTPUT
 feed_schedule: feeding_times,
 is_in_any: boolean
 END

 OPERATOR empty
 SPECIFICATION
 OUTPUT
 x: feeding_times
 END

END

IMPLEMENTATION ADA feeding_times
END

Annex F: Sample PSDL Graphs and Expanded Source Files

 106

TYPE military_time
SPECIFICATION
END

IMPLEMENTATION ADA military_time
END
TYPE sensor_status
SPECIFICATION
END

IMPLEMENTATION ADA sensor_status
END
OPERATOR monitor_nh3_level_55
 SPECIFICATION
 OUTPUT
 nh3: float,
 nh3_status: sensor_status
 MAXIMUM EXECUTION TIME 80 MS
 END

 IMPLEMENTATION ADA monitor_nh3_level_55
 END

OPERATOR monitor_h2o_level_57
 SPECIFICATION
 OUTPUT
 h2o: float,
 h2o_status: sensor_status
 MAXIMUM EXECUTION TIME 80 MS
 END

 IMPLEMENTATION ADA monitor_h2o_level_57
 END

OPERATOR display_status_59
 SPECIFICATION
 INPUT
 o2: float,
 h2o: float,
 nh3: float,
 inlet_setting: float,
 feeding: boolean,
 drain_setting: float
 MAXIMUM EXECUTION TIME 300 MS
 END

 IMPLEMENTATION ADA display_status_59
 END

OPERATOR control_water_flow_61
 SPECIFICATION
 INPUT
 o2_status: sensor_status,
 nh3_status: sensor_status,
 h2o_status: sensor_status

Annex F: Sample PSDL Graphs and Expanded Source Files

 107

 OUTPUT
 activate_inlet: change_valve,
 activate_drain: change_valve
 MAXIMUM EXECUTION TIME 100 MS
 END

 IMPLEMENTATION ADA control_water_flow_61
 END

OPERATOR monitor_o2_level_63
 SPECIFICATION
 OUTPUT
 o2: float,
 o2_status: sensor_status
 MAXIMUM EXECUTION TIME 80 MS
 END

 IMPLEMENTATION ADA monitor_o2_level_63
 END

OPERATOR adjust_inlet_65
 SPECIFICATION
 INPUT
 activate_inlet: change_valve,
 inlet_valve_position: float
 OUTPUT
 inlet_setting: float,
 inlet_valve_position: float
 MAXIMUM EXECUTION TIME 80 MS
 END

 IMPLEMENTATION ADA adjust_inlet_65
 END

OPERATOR adjust_drain_67
 SPECIFICATION
 INPUT
 activate_drain: change_valve,
 drain_valve_position: float
 OUTPUT
 drain_setting: float,
 drain_valve_position: float
 MAXIMUM EXECUTION TIME 80 MS
 END

 IMPLEMENTATION ADA adjust_drain_67
 END

OPERATOR control_feeder_69
 SPECIFICATION
 INPUT
 feed_schedule: feeding_times
 OUTPUT
 feeding: boolean
 MAXIMUM EXECUTION TIME 100 MS

Annex F: Sample PSDL Graphs and Expanded Source Files

 108

 END

 IMPLEMENTATION ADA control_feeder_69
 END

OPERATOR get_feeding_time_82
 SPECIFICATION
 INPUT
 feed_schedule: feeding_times
 OUTPUT
 feed_schedule: feeding_times
 END

 IMPLEMENTATION ADA get_feeding_time_82
 END

OPERATOR fishies_53
 SPECIFICATION
 STATES feed_schedule: feeding_times INITIALLY empty
 STATES inlet_valve_position: float INITIALLY 0.0
 STATES drain_valve_position: float INITIALLY 0.0
 END

 IMPLEMENTATION
 GRAPH
 VERTEX monitor_nh3_level_55: 80 MS
 VERTEX monitor_h2o_level_57: 80 MS
 VERTEX display_status_59: 300 MS
 VERTEX control_water_flow_61: 100 MS
 VERTEX monitor_o2_level_63: 80 MS
 VERTEX adjust_inlet_65: 80 MS
 VERTEX adjust_drain_67: 80 MS
 VERTEX control_feeder_69: 100 MS
 VERTEX get_feeding_time_82

 EDGE o2 monitor_o2_level_63 -> display_status_59
 EDGE h2o monitor_h2o_level_57 -> display_status_59
 EDGE nh3 monitor_nh3_level_55 -> display_status_59
 EDGE o2_status monitor_o2_level_63 -> control_water_flow_61
 EDGE nh3_status monitor_nh3_level_55 -> control_water_flow_61
 EDGE h2o_status monitor_h2o_level_57 -> control_water_flow_61
 EDGE activate_inlet control_water_flow_61 -> adjust_inlet_65
 EDGE activate_drain control_water_flow_61 -> adjust_drain_67
 EDGE inlet_setting adjust_inlet_65 -> display_status_59
 EDGE feeding control_feeder_69 -> display_status_59
 EDGE feed_schedule get_feeding_time_82 -> control_feeder_69
 EDGE inlet_valve_position adjust_inlet_65 -> adjust_inlet_65
 EDGE drain_setting adjust_drain_67 -> display_status_59
 EDGE drain_valve_position adjust_drain_67 -> adjust_drain_67
 EDGE feed_schedule get_feeding_time_82 -> get_feeding_time_82

 DATA STREAM
 o2: float,
 h2o: float,
 nh3: float,

Annex F: Sample PSDL Graphs and Expanded Source Files

 109

 o2_status: sensor_status,
 nh3_status: sensor_status,
 h2o_status: sensor_status,
 activate_inlet: change_valve,
 activate_drain: change_valve,
 inlet_setting: float,
 feeding: boolean,
 drain_setting: float
 CONTROL CONSTRAINTS
 OPERATOR monitor_nh3_level_55
 PERIOD 1000 MS
 OPERATOR monitor_h2o_level_57
 PERIOD 1000 MS
 OPERATOR display_status_59
 PERIOD 1500 MS
 OPERATOR control_water_flow_61
 PERIOD 1000 MS
 OPERATOR monitor_o2_level_63
 PERIOD 1000 MS
 OPERATOR adjust_inlet_65
 TRIGGERED BY SOME activate_inlet
 OPERATOR adjust_drain_67
 TRIGGERED BY SOME activate_drain
 OPERATOR control_feeder_69
 PERIOD 1000 MS
 OPERATOR get_feeding_time_82
 END

Annex F: Sample PSDL Graphs and Expanded Source Files

 110

PSDL Graph for Lec_Four_Example.psdl

The decomposition of Operator “autopilot_software”.

Annex F: Sample PSDL Graphs and Expanded Source Files

 111

Expanded PSDL File for Lec_Four_Example.psdl

TYPE elevator_status_type
SPECIFICATION
END

IMPLEMENTATION ada elevator_status_type
END

TYPE rudder_status_type
SPECIFICATION
END

IMPLEMENTATION ada rudder_status_type
END

TYPE course_command_type
SPECIFICATION
END

IMPLEMENTATION ada course_command_type
END

TYPE altitude_command_type
SPECIFICATION
END

IMPLEMENTATION ada altitude_command_type
END

Annex F: Sample PSDL Graphs and Expanded Source Files

 112

OPERATOR compass_7
 SPECIFICATION
 INPUT delta_course: integer
 OUTPUT actual_course: float
 MAXIMUM EXECUTION TIME 0 MS
 END

 IMPLEMENTATION ada compass_7
 END

OPERATOR control_surfaces_10
 SPECIFICATION
 INPUT course_command: course_command_type
 INPUT altitude_command: altitude_command_type
 OUTPUT delta_course: integer
 OUTPUT delta_altitude: integer
 OUTPUT elevator_status: elevator_status_type
 OUTPUT rudder_status: rudder_status_type
 MAXIMUM EXECUTION TIME 0 MS
 END

 IMPLEMENTATION ada control_surfaces_10
 END

OPERATOR altimeter_13
 SPECIFICATION
 INPUT delta_altitude: integer
 OUTPUT actual_altitude: integer
 MAXIMUM EXECUTION TIME 0 MS
 END

 IMPLEMENTATION ada altimeter_13
 END

OPERATOR gui_40
 SPECIFICATION
 INPUT actual_course: float
 INPUT rudder_status: rudder_status_type
 INPUT actual_altitude: integer
 INPUT elevator_status: elevator_status_type
 OUTPUT desired_course: integer
 OUTPUT desired_altitude: integer
 MAXIMUM EXECUTION TIME 200 MS
 END

 IMPLEMENTATION ada gui_40
 END

OPERATOR correct_course_43
 SPECIFICATION
 INPUT desired_course: integer
 INPUT actual_course: float
 OUTPUT course_command: course_command_type
 MAXIMUM EXECUTION TIME 75 MS
 END

Annex F: Sample PSDL Graphs and Expanded Source Files

 113

 IMPLEMENTATION ada correct_course_43
 END

OPERATOR correct_altitude_46
 SPECIFICATION
 INPUT desired_altitude: integer
 INPUT actual_altitude: integer
 OUTPUT altitude_command: altitude_command_type
 MAXIMUM EXECUTION TIME 75 MS
 END

 IMPLEMENTATION ada correct_altitude_46
 END

OPERATOR lec_four_example_expanded_4
 SPECIFICATION
 STATES delta_course: integer INITIALLY 0.0
 STATES delta_altitude: integer INITIALLY 0
 STATES desired_course: integer INITIALLY 0
 STATES desired_altitude: integer INITIALLY 0
 END

 IMPLEMENTATION
 GRAPH
 VERTEX compass_7_6: 0 MS
 PROPERTY x = 110
 PROPERTY y = 240
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = TRUE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX control_surfaces_10_9: 0 MS
 PROPERTY x = 369
 PROPERTY y = 50
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = -(4)
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = TRUE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"

Annex F: Sample PSDL Graphs and Expanded Source Files

 114

 VERTEX altimeter_13_12: 0 MS
 PROPERTY x = 645
 PROPERTY y = 235
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = TRUE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX gui_40_39: 200 MS
 VERTEX correct_course_43_42: 75 MS
 VERTEX correct_altitude_46_45: 75 MS
 EDGE delta_course control_surfaces_10_9 -> compass_7_6
 PROPERTY id = 18
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "310 84 255 80 199 78 155 86 121 100 104 120
96 141 91 177 "
 EDGE delta_altitude control_surfaces_10_9 -> altimeter_13_12
 PROPERTY id = 20
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "435 94 463 85 545 90 590 95 623 102 654 130
659 163 651 193 "
 EDGE desired_course gui_40_39 -> correct_course_43_42
 EDGE desired_altitude gui_40_39 -> correct_altitude_46_45
 EDGE actual_course compass_7_6 -> gui_40_39
 EDGE actual_course compass_7_6 -> correct_course_43_42
 EDGE actual_altitude altimeter_13_12 -> gui_40_39
 EDGE actual_altitude altimeter_13_12 -> correct_altitude_46_45
 EDGE elevator_status control_surfaces_10_9 -> gui_40_39
 EDGE rudder_status control_surfaces_10_9 -> gui_40_39
 EDGE course_command correct_course_43_42 -> control_surfaces_10_9
 EDGE altitude_command correct_altitude_46_45 ->
control_surfaces_10_9
 DATA STREAM
 actual_course: float,
 actual_altitude: integer,
 elevator_status: elevator_status_type,

Annex F: Sample PSDL Graphs and Expanded Source Files

 115

 rudder_status: rudder_status_type,
 course_command: course_command_type,
 altitude_command: altitude_command_type
 CONTROL CONSTRAINTS
 OPERATOR compass_7_6
 PERIOD 100 MS
 OPERATOR control_surfaces_10_9
 TRIGGERED BY SOME course_command, altitude_command
 MINIMUM CALLING PERIOD 100 MS
 MAXIMUM RESPONSE TIME 200 MS
 OPERATOR altimeter_13_12
 PERIOD 100 MS
 OPERATOR gui_40_39
 PERIOD 500 MS
 OUTPUT desired_altitude IF ((desired_altitude > 0) and
(desired_altitude <= 35000))
 OUTPUT desired_course IF ((desired_course >= 0.0) and
(desired_course <= 360.0))
 OPERATOR correct_course_43_42
 TRIGGERED IF (((actual_course - desired_course) > 0.5) or
((actual_course - desired_course) < -(0.5)))
 PERIOD 500 MS
 OPERATOR correct_altitude_46_45
 TRIGGERED IF (((actual_altitude - desired_altitude) > 30) or
((actual_altitude - desired_altitude) < -(30)))
 PERIOD 500 MS
 END

Annex F: Sample PSDL Graphs and Expanded Source Files

 116

PSDL Graph for “bpowers_ffcs.psdl”

Expanded PSDL File for bpowers_ffcs.psdl

TYPE schedule
SPECIFICATION
END

IMPLEMENTATION ada schedule
END

TYPE command_type
SPECIFICATION
END

IMPLEMENTATION ada command_type
END

TYPE schedule_type
SPECIFICATION

 OPERATOR zero
 SPECIFICATION
 OUTPUT s: schedule_type
 END

Annex F: Sample PSDL Graphs and Expanded Source Files

 117

END

IMPLEMENTATION ada schedule_type
END

TYPE continuous_valve_setting_type
SPECIFICATION

 OPERATOR zero
 SPECIFICATION
 OUTPUT o: continuous_valve_setting_type
 END

END

IMPLEMENTATION ada continuous_valve_setting_type
END

TYPE binary_valve_setting_type
SPECIFICATION
END

IMPLEMENTATION ada binary_valve_setting_type
END

OPERATOR control_inlet_valve_7
 SPECIFICATION
 INPUT water_level: float
 INPUT oxygen_level: float
 INPUT ammonia_level: float
 OUTPUT adjust: boolean
 MAXIMUM EXECUTION TIME 3000 MS
 END

 IMPLEMENTATION ada control_inlet_valve_7
 END

OPERATOR adjust_outlet_valve_10
 SPECIFICATION
 INPUT close: boolean
 INPUT o: continuous_valve_setting_type
 OUTPUT o: continuous_valve_setting_type
 MAXIMUM EXECUTION TIME 100 MS
 END

 IMPLEMENTATION ada adjust_outlet_valve_10
 END

OPERATOR control_outlet_valve_13
 SPECIFICATION
 INPUT water_level: float
 INPUT oxygen_level: float
 INPUT ammonia_level: float
 OUTPUT close: boolean

Annex F: Sample PSDL Graphs and Expanded Source Files

 118

 MAXIMUM EXECUTION TIME 3000 MS
 END

 IMPLEMENTATION ada control_outlet_valve_13
 END

OPERATOR adjust_inlet_valve_16
 SPECIFICATION
 INPUT adjust: boolean
 INPUT i: continuous_valve_setting_type
 OUTPUT i: continuous_valve_setting_type
 MAXIMUM EXECUTION TIME 100 MS
 END

 IMPLEMENTATION ada adjust_inlet_valve_16
 END

OPERATOR display_ffcs_status_19
 SPECIFICATION
 INPUT o: continuous_valve_setting_type
 INPUT i: continuous_valve_setting_type
 INPUT f: binary_valve_setting_type
 INPUT oxygen_level: float
 INPUT ammonia_level: float
 INPUT water_level: float
 MAXIMUM EXECUTION TIME 500 MS
 END

 IMPLEMENTATION ada display_ffcs_status_19
 END

OPERATOR monitor_user_input_22
 SPECIFICATION
 INPUT s: boolean
 OUTPUT c: command_type
 OUTPUT s: boolean
 MAXIMUM EXECUTION TIME 500 MS
 END

 IMPLEMENTATION ada monitor_user_input_22
 END

OPERATOR control_feeder_31
 SPECIFICATION
 INPUT c: command_type
 OUTPUT f: binary_valve_setting_type
 MAXIMUM EXECUTION TIME 500 MS
 END

 IMPLEMENTATION ada control_feeder_31
 END

OPERATOR sensors_37
 SPECIFICATION
 OUTPUT water_level: float

Annex F: Sample PSDL Graphs and Expanded Source Files

 119

 OUTPUT oxygen_level: float
 OUTPUT ammonia_level: float
 MAXIMUM EXECUTION TIME 0 MS
 END

 IMPLEMENTATION ada sensors_37
 END

OPERATOR bpowers_ffcs_4
 SPECIFICATION
 STATES s: boolean INITIALLY FALSE
 END

 IMPLEMENTATION
 GRAPH
 VERTEX control_inlet_valve_7_6: 3000 MS
 PROPERTY x = 43
 PROPERTY y = 76
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 39
 PROPERTY label_y_offset = 16
 PROPERTY met_font = 5
 PROPERTY met_unit = 2
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = FALSE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX adjust_outlet_valve_10_9: 100 MS
 PROPERTY x = 495
 PROPERTY y = 222
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = FALSE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX control_outlet_valve_13_12: 3000 MS
 PROPERTY x = 557
 PROPERTY y = 59
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 2

Annex F: Sample PSDL Graphs and Expanded Source Files

 120

 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = FALSE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX adjust_inlet_valve_16_15: 100 MS
 PROPERTY x = 80
 PROPERTY y = 196
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -(1)
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = FALSE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX display_ffcs_status_19_18: 500 MS
 PROPERTY x = 297
 PROPERTY y = 251
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = FALSE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX monitor_user_input_22_21: 500 MS
 PROPERTY x = 59
 PROPERTY y = 384
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 33
 PROPERTY label_y_offset = 21
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = FALSE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX control_feeder_31_30: 500 MS
 PROPERTY x = 374
 PROPERTY y = 404
 PROPERTY radius = 35
 PROPERTY color = 62

Annex F: Sample PSDL Graphs and Expanded Source Files

 121

 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = FALSE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX sensors_37_36: 0 MS
 PROPERTY x = 295
 PROPERTY y = 46
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -(40)
 PROPERTY is_terminator = TRUE
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 EDGE water_level sensors_37_36 -> control_inlet_valve_7_6
 PROPERTY id = 39
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "216 19 212 14 169 4 158 4 102 15 90 17 124 6
110 10 70 23 44 40 "
 EDGE oxygen_level sensors_37_36 -> control_inlet_valve_7_6
 PROPERTY id = 41
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 18
 PROPERTY label_y_offset = 12
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "155 26 101 38 "
 EDGE ammonia_level sensors_37_36 -> control_inlet_valve_7_6
 PROPERTY id = 43
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 34
 PROPERTY label_y_offset = 7
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)

Annex F: Sample PSDL Graphs and Expanded Source Files

 122

 PROPERTY spline = "168 67 117 74 82 80 "
 EDGE water_level sensors_37_36 -> control_outlet_valve_13_12
 PROPERTY id = 47
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "392 10 446 14 486 15 556 24 "
 EDGE oxygen_level sensors_37_36 -> control_outlet_valve_13_12
 PROPERTY id = 49
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -(33)
 PROPERTY label_y_offset = 6
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "429 40 504 40 "
 EDGE ammonia_level sensors_37_36 -> control_outlet_valve_13_12
 PROPERTY id = 51
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -(7)
 PROPERTY label_y_offset = 13
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "378 70 420 86 454 83 488 71 "
 EDGE adjust control_inlet_valve_7_6 -> adjust_inlet_valve_16_15
 PROPERTY id = 53
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = ""
 EDGE close control_outlet_valve_13_12 -> adjust_outlet_valve_10_9
 PROPERTY id = 55
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -(15)
 PROPERTY label_y_offset = 19
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "535 114 529 140 "
 EDGE o adjust_outlet_valve_10_9 -> display_ffcs_status_19_18
 PROPERTY id = 57
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0

Annex F: Sample PSDL Graphs and Expanded Source Files

 123

 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = ""
 EDGE i adjust_inlet_valve_16_15 -> display_ffcs_status_19_18
 PROPERTY id = 59
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -(3)
 PROPERTY label_y_offset = 4
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "172 208 222 220 "
 EDGE f control_feeder_31_30 -> display_ffcs_status_19_18
 PROPERTY id = 61
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = ""
 EDGE c monitor_user_input_22_21 -> control_feeder_31_30
 PROPERTY id = 63
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = ""
 EDGE s monitor_user_input_22_21 -> monitor_user_input_22_21
 PROPERTY id = 65
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "99 303 89 277 60 275 44 273 26 298 25 320 "
 EDGE oxygen_level sensors_37_36 -> display_ffcs_status_19_18
 PROPERTY id = 67
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -(18)
 PROPERTY label_y_offset = -(24)
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)

Annex F: Sample PSDL Graphs and Expanded Source Files

 124

 PROPERTY spline = ""
 EDGE ammonia_level sensors_37_36 -> display_ffcs_status_19_18
 PROPERTY id = 69
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 13
 PROPERTY label_y_offset = 13
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "348 118 348 156 "
 EDGE water_level sensors_37_36 -> display_ffcs_status_19_18
 PROPERTY id = 71
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -(26)
 PROPERTY label_y_offset = 17
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "238 116 238 154 "
 EDGE i adjust_inlet_valve_16_15 -> adjust_inlet_valve_16_15
 PROPERTY id = 78
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 19
 PROPERTY label_y_offset = 31
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "130 181 142 160 140 141 128 135 118 130 106
130 95 136 91 144 88 153 "
 EDGE o adjust_outlet_valve_10_9 -> adjust_outlet_valve_10_9
 PROPERTY id = 87
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 10
 PROPERTY label_y_offset = 7
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -(40)
 PROPERTY spline = "480 279 489 293 506 296 525 297 534 276 530
248 "
 DATA STREAM
 water_level: float,
 oxygen_level: float,
 ammonia_level: float,
 adjust: boolean,
 close: boolean,
 o: continuous_valve_setting_type,
 i: continuous_valve_setting_type,
 f: binary_valve_setting_type,
 c: command_type
 CONTROL CONSTRAINTS
 OPERATOR control_inlet_valve_7_6

Annex F: Sample PSDL Graphs and Expanded Source Files

 125

 PERIOD 10000 MS
 FINISH WITHIN 6000 MS
 OPERATOR adjust_outlet_valve_10_9
 TRIGGERED BY SOME close
 MINIMUM CALLING PERIOD 1000 MS
 MAXIMUM RESPONSE TIME 1000 MS
 OPERATOR control_outlet_valve_13_12
 PERIOD 10000 MS
 FINISH WITHIN 6000 MS
 OPERATOR adjust_inlet_valve_16_15
 TRIGGERED BY SOME adjust
 MINIMUM CALLING PERIOD 1000 MS
 MAXIMUM RESPONSE TIME 1000 MS
 OPERATOR display_ffcs_status_19_18
 PERIOD 1000 MS
 FINISH WITHIN 1000 MS
 OPERATOR monitor_user_input_22_21
 PERIOD 1000 MS
 FINISH WITHIN 1000 MS
 OPERATOR control_feeder_31_30
 PERIOD 1000 MS
 FINISH WITHIN 1000 MS
 OPERATOR sensors_37_36
 PERIOD 10000 MS
 END

 126

THIS PAGE INTENTIONALLY LEFT BLANK

 127

APPENDIX B. PSDL AND THE AXIOMS OF CHAPTER III

The following is a comprehensive listing of the axioms presented in Chapter III.

This list restates the axioms as described in Chapter III along with an explanation of its

relationship to PSDL.

Axiom 3.1: If you prefer a to b, you do not prefer b to a.

Axiom 3.2: If you do not prefer a to b, and do not prefer b to c, then you do not
prefer a to c.

Relation to PSDL: There is no direct applicability to PSDL. These were given to

position the remaining axioms under the laws of symmetry and transitivity.

Axiom 3.3: Software complexity measures lie on an ordinal or ratio scale.
Relation to PSDL: No matter what the derived complexity measure of PSDL

becomes, it must lie on one of these scales. We further stated that a measure on the ratio
scale would be best in order for us to understand complexity of PSDL to mean one is
twice as complex as another.

Axiom 3.4: Complexity of PSDL, and the augmented graphs associated with it,

is implicitly defined as its understandability versus its readability and
maintainability.

Relation to PSDL: When deriving complexity measures, there must be an explicit
definition of complexity. That definition in this thesis is the level of understandability.

1. Axioms by Tsai, Lopez, Rodriguez and Volovik. [Ref. 14]

Axiom 3.5: “One of the most significant properties of a metric is to
conform to intuition. Intuition applied to the objects being
measured means that objects, which are seemingly more
complex (from one’s previous experience) should also be
declared as more complex when the metric is applied.
Objects that are about equal complexity should also
measure about the same. The point is that some objects
seem simpler to most people than other objects, and the
metric should, in most cases, confirm to this observation.”

Relation to PSDL: Initial observation of a PSDL flow graph would indicate equal
complexity if there were equal numbers of nodes and edges. That should be the basis of
understanding complexity. We find, though, the underlying operator anddata stream
properties must also be considered and could possiblycreate flow graphs of unequal
complexities.

 128

Axiom 3.6: “Another property of metrics going hand in hand with
intuition is consistency (or monotony). In other words, if
data structure x is a substructure of a data structure y,
then () ()Complexity x Complexity y≤ .”

Relation to PSDL: Any substructure (i.e., dataflow diagram) under a
composite operator must be less complex than the structure from which it came (i.e., the
top-level diagram). Further, if composite operators are used in a PSDL top-level
diagram, that diagram will be considered less complex in terms of understandability than
similar prototypes that represent the system as a flattened diagram. (See Axiom 3.10 for
further clarification).

Axiom 3.7: “The measure should measure the structure of data, not
only the size of data. Structure of data tends to be stable
during the design process, whereas size of data might not
be known even during run-time.”

Relation to PSDL: A dataflow diagramrepresents the structure of the PSDL
file, and it represents it during the design phase. Additionally, there is not sufficient data
to determine if the size of a PSDL file has any correlation on the final size of the actual
system. Further, in Chapter I and II, size of PSDL files was determined to be an
inconclusive complexity measure. This axiom states it is necessary to look at other
things.

Axiom 3.8: “It should be possible to use the metric at a stage of the
software design when not all of the decisions have been
already made. Measuring a finished product to guide its
design is of no use. It is too late. To support these
properties, the metric should tolerate incomplete
information.”

Relation to PSDL: This is the foundation of this research. PSDL is used at the
specification and design stages of software development.

Axiom 3.9: “The metric should have the property of automation.
Given a data structure description in some formal
language, it should be possible to produce a formal
machine ready representation of the data structure. The
representation seen can be used as an input to a program
and the set of measurements can be produced. Resulting
measurements themselves should have such a form that
humans can easily interpret them, as well as being easily
used as an input to some metric-based design support
system. To provide automation, the metric should be
based on some mathematical foundation.”

 129

Relation to PSDL: The driving factor of this research is to validate the
complexity measure used by Dr. Nogueira [Ref. 10] as an input to his Risk Management
Model. My findings will be incorporated into the dissertation being prepared by Major
Michael. In Appendix A, a parser was built that automatically calculated the complexity
of PSDL files using MCC and LGC measures. Further work can yield an analyzer
provided to CAPS calculating the complexity automatically as the system is built in the
drawing pane.

Axiom 3.10: “Most people cannot manipulate more than a small

amount of information at the same time unless there are
visual tools available to assist them. Therefore, it is of
importance to be able to visualize the process of
measurement. It should be easy to present a pictorial
representation of the data object and to illustrate
graphically the process of application of the metric to a
particular data structure.”

Relation toPSDL: The CAPS process is completely pictorial and represents
the PSDL code. This axiom also talks about Chunk Theory [Ref. 9]. The process of
building prototypes using CAPS calls for graphs in the drawing pane to consist of 7 ± 2
operators. Further, there is much discussion on the use of compositeoperators to
minimize complexity. Thinking of complexity in terms of fan_in and fan_out is easily
represented by the graphs.

The use of composite operators can be regarded as the use of nested nodes.
Interestingly enough, most authors of complexity measures disagree with this axiom.
They describe nested structures as more than complex than sequential structures. Zuse
[Ref. 14] describes the following characteristics from authors, L. A. Belady, R. Bache,
and P. Piwowarski respectively:

If we assume that it is more difficult to construct (or understand or
maintain) a program whose nodes are imbedded into multiple
environments than a program with less nesting, then a weighted
summation of the nodes is a reasonable indicator of programming
complexity.

…Firstly, if a flowgraph is added by sequencing or nesting, then its metric
increases…

Nested control structures are more complex than sequential control
structures.

These authors are free to describe their measures in any way they choose so long
as they express it. Remember, part of developing a measure is to explain the intuition
behind it. We so happen to state that nesting provides less complexity.

 130

2. Axioms by Weyuker [Ref. 14]:

Axiom 3.11: () () () ()()P Q P Q P Qµ µ∃ ∃ ≡ ∧ ≠

The intuition behind this property is that even though programs compute
the same function, it is the details of the implementation that determine the
complexity of the program, not the function being computed by the
program.

Relation to PSDL: A series of similar CAPS projects, and their generated
PSDL code, all having the same requirements and performing the same function, may
yield different complexities. The complexity will be dependent on the programmers’
interpretation of the requirements and the decisions made on how to build the prototype.
Each project will implement similar functions but will exhibit different complexities.
The same can be said about any programming language especially in an academic
environment. Students of the programming language will be given like projects to
complete and not one will be written exactly as another. Moreover, although each
program performs similar functionality, the complexity of those programs will be based,
partly, on the structure the student decided to use to fulfill the requirements.

Axiom 3.12: () () () () () ()(); ;P Q P P Q and Q P Qµ µ µ µ∀ ∀ ≤ ≤

We believe that “montonicity” is another fundamentally important
property and it is difficult to imagine the sense in which a measure which
fails to satisfy the montonicity property is measuring complexity

Relation to PSDL: Dataflow diagrams with composite operators are normally
looked at as two separate diagrams, the top-level structure and the substructure. The
composition (i.e., concatenation) of these two diagrams, into one, represents a third
expanded diagram of the modeled system. These three are also represented by the PSDL
source file and expanded file. This axiom states, the composition (i.e., the expanded
diagram) of the two is always greater than the individual parts. Therefore, for every
PSDL program, it will hold true that the complexity of any concatenated programs will
be more complex or equally complex than any one of its individual programs. Further
stated, there is no possible way the concatenation can be less complex.

Axiom 3.13: () () () () ()();P Q P Q P Qµ µ µ∀ ∀ + ≤

The question is, given that the complexity of a program body should be no
less than the complexities or each of its parts, can we make a stronger
statement? For example, should the complexity of a program body be no
less than the sum of the complexities of its components? Intuitively, in
order to implement a program, each of its parts must be implemented.

 131

Relation to PSDL: This axiom is similar to 3.12 but further relates the
composition of the two programs to the sum of its parts. For every PSDL program, it will
hold true that the complexity of any concatenated program will be more complex or
equally complex than the sum of the individual programs. Further stated, the whole is
always greater than the sum of its parts. This axiom is overarching basis of determining
PSDL complexity.

3. McCabe Cyclomatic Complexity (MCC) Measure

Axiom 3.14:

• MCC-V(G) is the maximum number of linearly independent paths in G; it
is the size of a basis set.

Relation to PSDL: This is not necessarily applicable to PSDL. Independent
paths do not always represent dataflow in PSDL. Hyperedges may exist in dataflow
diagrams showing multiple paths from which data is produced and/or consumed.

• MCC-V(G) depends only on the decision structure of G.

Relation to PSDL: This is not applicable to PSDL. PSDL complexity is
based on more than its structure or size.

• MCC-V(G) ≥ 1.

Relation to PSDL: PSDL complexity will end up being something greater
than one and will never be equal to one.

• G has only one path if and only if v(G) = 1.

Relation to PSDL: Although, PSDL is something greater than one, as a
minimum, it is doubtful that level of complexity will ever be reached. That level of
complexity may never represent a functional prototype.

• Inserting or deleting functional statements to G does not affect v(G).

Relation to PSDL: This is not applicable to PSDL. Adding additional
properties to nodes and edges in PSDL will affect the measure.

• Inserting a new edge in G increases v(G) by unity.

Relation to PSDL: The complexity measure of PSDL is multiplicative and
therefore, inserting a new edge will increase the complexity by something greater than
one.

 132

THIS PAGE INTENTIONALLY LEFT BLANK

 133

APPENDIX C. PSDL SOURCE FILE FOR AUTOPILOT CONTROL
SYSTEM

TYPE rudder_status_type
 SPECIFICATION
 END
 IMPLEMENTATION ada rudder_status_type
 END

TYPE elevator_status_type
 SPECIFICATION
 END
 IMPLEMENTATION ada elevator_status_type
 END

TYPE altitude_command_type
 SPECIFICATION
 END
 IMPLEMENTATION ada altitude_command_type
 END

TYPE course_command_type
 SPECIFICATION
 END
 IMPLEMENTATION ada course_command_type
 END

 OPERATOR autopilot_4
 SPECIFICATION
 STATES delta_course : integer INITIALLY 0
 STATES delta_altitude : integer INITIALLY 0
 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION
 GRAPH
 VERTEX control_surfaces_7_6 : 0 ms
 PROPERTY x = 298
 PROPERTY y = 45
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 1
 PROPERTY label_y_offset = -15
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -40
 PROPERTY is_terminator = true

 134

 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "none"
 VERTEX compass_10_9 : 0 ms
 PROPERTY x = 97
 PROPERTY y = 180
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -40
 PROPERTY is_terminator = true
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX altimeter_13_12 : 0 ms
 PROPERTY x = 514
 PROPERTY y = 189
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 1
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -40
 PROPERTY is_terminator = true
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "hard"
 VERTEX autopilot_software_16_15
 PROPERTY x = 301
 PROPERTY y = 356
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 1
 PROPERTY label_y_offset = 11
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -40
 PROPERTY is_terminator = false
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "none"
 EDGE delta_course control_surfaces_7_6 -> compass_10_9
 PROPERTY id = 33
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0

 135

 PROPERTY latency_y_offset = -40
 PROPERTY spline = "188 44 149 48 128 59 121 78 "
 EDGE delta_altitude control_surfaces_7_6 -> altimeter_13_12
 PROPERTY id = 35
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -1
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "387 46 440 46 486 53 505 92 "
 EDGE actual_course compass_10_9 -> autopilot_software_16_15
 PROPERTY id = 37
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "101 247 103 294 123 330 152 343 210 357
"
 EDGE actual_altitude altimeter_13_12 ->
autopilot_software_16_15
 PROPERTY id = 39
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 1
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "510 250 510 302 493 334 441 349 395 361
"
 EDGE rudder_status control_surfaces_7_6 ->
autopilot_software_16_15
 PROPERTY id = 41
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -17
 PROPERTY label_y_offset = -38
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "218 101 210 129 198 157 196 190 191 227
206 278 "
 EDGE elevator_status control_surfaces_7_6 ->
autopilot_software_16_15
 PROPERTY id = 48
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 31
 PROPERTY label_y_offset = 17
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1

 136

 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "261 96 243 130 233 183 228 230 267 287 "
 EDGE altitude_command autopilot_software_16_15 ->
control_surfaces_7_6
 PROPERTY id = 59
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 30
 PROPERTY label_y_offset = -115
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "335 335 364 301 381 270 393 226 406 177
384 122 367 88 "
 EDGE course_command autopilot_software_16_15 ->
control_surfaces_7_6
 PROPERTY id = 66
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -45
 PROPERTY label_y_offset = 25
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "325 318 345 283 363 229 363 181 355 140
341 103 "
 DATA STREAM
 actual_course : real,
 actual_altitude : integer,
 rudder_status : rudder_status_type,
 elevator_status : elevator_status_type,
 altitude_command : altitude_command_type,
 course_command : course_command_type
 CONTROL CONSTRAINTS
 OPERATOR control_surfaces_7_6
 TRIGGERED BY SOME course_command, altitude_command
 MINIMUM CALLING PERIOD 100 ms
 MAXIMUM RESPONSE TIME 200 ms
 OUTPUT delta_course
 IF TRUE
 OUTPUT delta_altitude
 IF TRUE
 OUTPUT rudder_status
 IF TRUE
 OUTPUT elevator_status
 IF TRUE
 OPERATOR compass_10_9
 PERIOD 100 ms
 OUTPUT actual_course
 IF TRUE
 OPERATOR altimeter_13_12
 PERIOD 100 ms
 OUTPUT actual_altitude
 IF TRUE

 137

 OPERATOR autopilot_software_16_15
 OUTPUT altitude_command
 IF TRUE
 OUTPUT course_command
 IF TRUE
 END

 OPERATOR control_surfaces_7
 SPECIFICATION
 INPUT altitude_command : altitude_command_type
 INPUT course_command : course_command_type
 OUTPUT delta_course : integer
 OUTPUT delta_altitude : integer
 OUTPUT rudder_status : rudder_status_type
 OUTPUT elevator_status : elevator_status_type
 MAXIMUM EXECUTION TIME 0 ms
 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION Ada control_surfaces_7
 END

 OPERATOR compass_10
 SPECIFICATION
 INPUT delta_course : integer
 OUTPUT actual_course : real
 MAXIMUM EXECUTION TIME 0 ms
 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION Ada compass_10
 END

 OPERATOR altimeter_13
 SPECIFICATION
 INPUT delta_altitude : integer
 OUTPUT actual_altitude : integer
 MAXIMUM EXECUTION TIME 0 ms
 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION Ada altimeter_13
 END

 OPERATOR autopilot_software_16
 SPECIFICATION
 INPUT actual_course : real
 INPUT actual_altitude : integer
 INPUT rudder_status : rudder_status_type
 INPUT elevator_status : elevator_status_type
 INPUT altitude_command : altitude_command_type
 OUTPUT altitude_command : altitude_command_type
 OUTPUT course_command : course_command_type
 STATES desired_course : integer INITIALLY 0
 STATES desired_altitude : integer INITIALLY 0

 138

 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION
 GRAPH
 VERTEX gui_74_73 : 200 ms
 PROPERTY x = 281
 PROPERTY y = 100
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -40
 PROPERTY is_terminator = false
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "none"
 VERTEX correct_course_77_76 : 75 ms
 PROPERTY x = 194
 PROPERTY y = 310
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -40
 PROPERTY is_terminator = false
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "none"
 VERTEX correct_altitude_80_79 : 75 ms
 PROPERTY x = 398
 PROPERTY y = 305
 PROPERTY radius = 35
 PROPERTY color = 62
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY met_font = 5
 PROPERTY met_unit = 1
 PROPERTY met_x_offset = 0
 PROPERTY met_y_offset = -40
 PROPERTY is_terminator = false
 PROPERTY network_mapping = "local_host"
 PROPERTY criticalness = "none"
 EDGE actual_course EXTERNAL -> gui_74_73
 PROPERTY id = 85
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 20
 PROPERTY label_y_offset = 4

 139

 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "101 51 149 55 197 67 "
 EDGE actual_altitude EXTERNAL -> gui_74_73
 PROPERTY id = 90
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -19
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "493 60 434 63 376 73 "
 EDGE rudder_status EXTERNAL -> gui_74_73
 PROPERTY id = 95
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "107 113 "
 EDGE elevator_status EXTERNAL -> gui_74_73
 PROPERTY id = 100
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 0
 PROPERTY label_y_offset = 0
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "486 114 "
 EDGE actual_course EXTERNAL -> correct_course_77_76
 PROPERTY id = 105
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 16
 PROPERTY label_y_offset = -3
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "24 227 "
 EDGE actual_altitude EXTERNAL -> correct_altitude_80_79
 PROPERTY id = 110
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -45
 PROPERTY label_y_offset = -2
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "566 227 "

 140

 EDGE desired_course gui_74_73 -> correct_course_77_76
 PROPERTY id = 114
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -35
 PROPERTY label_y_offset = -2
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = ""
 EDGE desired_altitude gui_74_73 -> correct_altitude_80_79
 PROPERTY id = 116
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 30
 PROPERTY label_y_offset = 3
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = ""
 EDGE course_command correct_course_77_76 -> EXTERNAL
 PROPERTY id = 127
 PROPERTY label_font = 5
 PROPERTY label_x_offset = 54
 PROPERTY label_y_offset = -5
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "41 315 37 314 "
 EDGE altitude_command correct_altitude_80_79 -> EXTERNAL
 PROPERTY id = 132
 PROPERTY label_font = 5
 PROPERTY label_x_offset = -31
 PROPERTY label_y_offset = -5
 PROPERTY latency_font = 5
 PROPERTY latency_unit = 1
 PROPERTY latency_x_offset = 0
 PROPERTY latency_y_offset = -40
 PROPERTY spline = "547 321 547 321 553 321 "
 CONTROL CONSTRAINTS
 OPERATOR gui_74_73
 PERIOD 500 ms
 OUTPUT desired_course
 IF desired_course >= 0.0 and desired_course <= 360.0
 OUTPUT desired_altitude
 IF desired_altitude > 0 and desired_altitude <= 35000
 OPERATOR correct_course_77_76
 TRIGGERED
 IF (((actual_course - desired_course) > 0.5) or
((actual_course - desired_course) < -(0.5)))
 PERIOD 500 ms
 OUTPUT course_command
 IF TRUE
 OPERATOR correct_altitude_80_79

 141

 TRIGGERED
 IF (((actual_altitude - desired_altitude) > 30) or
((actual_altitude - desired_altitude) < -(10)))
 PERIOD 500 ms
 OUTPUT altitude_command
 IF TRUE
 END

 OPERATOR gui_74
 SPECIFICATION
 INPUT actual_course : real
 INPUT actual_altitude : integer
 INPUT rudder_status : rudder_status_type
 INPUT elevator_status : elevator_status_type
 OUTPUT desired_course : integer
 OUTPUT desired_altitude : integer
 MAXIMUM EXECUTION TIME 200 ms
 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION Ada gui_74
 END

 OPERATOR correct_course_77
 SPECIFICATION
 INPUT actual_course : real
 INPUT desired_course : integer
 OUTPUT course_command : course_command_type
 MAXIMUM EXECUTION TIME 75 ms
 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION Ada correct_course_77
 END

 OPERATOR correct_altitude_80
 SPECIFICATION
 INPUT actual_altitude : integer
 INPUT desired_altitude : integer
 OUTPUT altitude_command : altitude_command_type
 MAXIMUM EXECUTION TIME 75 ms
 DESCRIPTION {}
 AXIOMS {}
 END
 IMPLEMENTATION Ada correct_altitude_80
 END

 142

THIS PAGE INTENTIONALLY LEFT BLANK

143

LIST OF REFERENCES

1. Douglas, Bruce Powell, Doing Hard Time: Developing Real-Time Systems with
UML, Objects, Frameworks, and Patterns, Addison-Wellesley, New York, NY,
1999.

2. Dupont, MAJ Joe, Murrah, MAJ Mike, Puett, LTC Joe, “Complexity Metrics for

DCAPS,” final project report for SW 4510, Naval Postgraduate School, Montery,
CA, September 2001.

3. Halstead, Maurice H., Elements of Software Science, Operating, and

Programming Systems Series, Volume 7, Elsevier, New York, NY, 1977.

4. Henry, S. M. and Kafura, D. G., “Software Structure Metrics Based on
Information Flow,” IEEE Transactions on Software Engineering, Vol. 7, No. 5,
pp. 510-518, 1981.

5. “Elementary Concepts in Statistics,”

[http://www.statsoftinc.com/textbook/esc.html], StatSoft, Inc., 1984-2002.

6. Luqi and Berzins, V., “Rapidly Prototyping Real-Time Systems,” IEEE Software,
pp. 25-36, September 1988.

7. McCabe, T., “A Complexity Measure,” IEEE Transactions on Software

Engineering, Vol. SE-1, No. 3, pp. 312-327, 1976.

8. “Merriam-Webster Dictionary,” [http://www.m-w.com.], Merriam-Webster, Inc,
2002.

9. Miller, G.A., “The Magical Number Seven, Plus or Minus Two: Some Limits On

Our Capacity for Processing Information,” Psychological Review, 1963.

10. Nogueira de León, J. C., A Formal Model for Risk Assessment in Software
Projects, Ph.D. Dissertation, Naval Postgraduate School, Monterey, CA,
September 2000.

11. Pressman, R. S., Software Engineering: A Practitioner's Approach, McGraw-Hill

Higher Education, 5th Edition, 2001.

12. Roberts, Fred S., “Measurement Theory with Applications to Decisionmaking,
Utility, and the Social Sciences,” Encyclopedia of Mathematics and Its
Applications, Addison Wesley Publishing Company, 1979.

13. Whitmire, S., Object-Oriented Design Measurement, Wiley, 1997.

144

14. Zuse, Horst, Software Complexity – Measures and Methods, Walter de Gruyter &
Co., New York, NY, 1991.

15. Zuse, Horst; A Framework of Software Measurement, Walter de Gruyter & Co.,

New York, NY, 1997.

16. Zuse, Horst, Drabe, Karin, ZD-MIS, Zuse/Drabe Measurement Information
System, [horst.zuse@t-online.de], Berlin, Germany, 2001.

145

BIBLIOGRAPHY

Alexander, C., “Notes on the Synthesis of Form,” Harvard Univ. Press, Cambridge, MA,
1964.

Basili, Victor, R., Caldiera, Gianluigi, Rombach, Dieter, H., “Software Measurement,”
Encyclopedia of Software Engineering, John Wiley, Volume 1, 1994.

Book by Zuse, Horst, Software Complexity – Measures and Methods, Document W021,
Metricating A-KINDRA BT Project 610287, Bache, R., South Bank, 1987.

Book by Zuse, Horst, Software Complexity – Measures and Methods, IBM Res. Rep.,
RC7560, System Parititioning and Its Measure, Belady, L. A. and Evangelisti, C. J.,
1979.

Book by Zuse, Horst, Software Complexity – Measures and Methods, Technical Report
149, Evaluating Software Complexity Measures, Weyuker, Elaine J., Courant Institute of
Mathematical Sciences, New York, NY, January 1985.

Bowles, Adrian John, Effects of Design Complexity on Software Maintenance, Ph.D.
Dissertation, Northwestern University, Evanston, IL, 1983.

Brooks, F. P. Jr.; The Mythical Man-Month: Essays on Software Engineering; Addison-
Wesley, Reading, MA, 1975.

Channon, R. N., On a Measure of Program Structure; Ph.D. Dissertation, Carnegie-
Mellon Univ., Pittsburgh, PA, November 1974.

Conte, S. D., Dunsmore, H. E., Shen, V. Y., Software Engineering Metrics and Model;
Benjamin/Cummings Publishing Company, Menlo Park, 1986.

Cordeiro, M., Distributed Hard Real-Time Scheduling for a Software Protoyping
Environment, Ph.D Dissertation, Naval Postgraduate School, Monterey, CA, September
2000.

IEEE Computer Society, IEEE Std. 610.12-1990 (supercedes Std. 729-1983), IEEE
Standard Glossary of Software Engineering Terminology, IEEE, New York, NY, 1990.

Krantz, David H., and others, Foundations of Measurement - Additive and Polynominal
Representation, Academic Press, Volume 1, 1971.

Lake, Al, “Use of Factor Analysis to develop OOP Software Complexity Metrics,”
Annual Oregon Workshop on Software Metrics, Silver Falls, Oregon, March 22-24,
1992.

146

Luqi, Berzins, V., Yeh, R., “A Prototyping Language for Real-Time Software,” IEEE
Transactions on Software Engineering, Vol. 14, No. 10, October 1988.

Luqi, Shing, Mantak, “CAPS – A Tool for Real-Time System Development and

Acquisition,” Naval Research Reviews, 1992.

Murrah, Major Michael R, Modified Risk Model, Ph.D. Dissertation, Naval Postgraduate
School, Monterey, CA, 2002.

Piwowarski, Paul, “A Nesting Complexity Measure,” Sigplan Notices, Vol. 17, No 9,
1982.

Rombach, H. D., Bradford, T. Ulery, “Improving Software Maintenance Through

Meausrement”; Proceedings of the IEEE, Vol. 77, No. 4, April 89.

Schach, Stephen, R., Software Engineering, Second Edition, IRWIN, Burr Ridge, Illinois,
1993.

Shaw, Mary, “Prospects for an Engineering Discipline of Software;” IEEE Software,
November 1990.

Stevens, S.S., “On the Theory of Scales and Measurement,” Science 103, 1946,

Thayer, T. A., Liplow, M., Nelson, E.C., Software Reliability, North-Holland, 1978.

Tsai, W.T. and others, “An Approach Measuring Data Structure Complexity,”
COMPSAC, 1986.

Weyuker, Elaine J., “Evaluating Software Complexity Measures,” IEEE Transactions of
Software Engineering, Vol. 14, No. 9, September 1988.

147

GLOSSARY

Absolute Scale: The absolute scale is the highest scale type level in the scale
typehierarchy. The admissible transformations of the absolute scale is g(x) = x. That
means,no admissible transformations of the numbers x are possible [Ref. 16].

Abstraction: Is the consideration or representation of general quality or

characteristics above and apart from any actual instance or specific object that prossesses
that quality or characteristic [Ref. 16].

Admissible Transformation: Transforming the numbers of a statement, the

truth or falsity of the statement has to be remained unchanged. For example: The
statement u(P1 o P2) = u(P1) + u(P2) can be multiplied with a>0 and the truth or falsity
of the statement remains unchanged. We do that now: a u(P1 o P2) = au(P1) + au(P2),
for a>0 [Ref. 16].

Algebraic Difference Structures: The main concept of an algebraic difference

structure is a set of objects and a quaternary operation on the set of objects A. A
quartenary operation can be interpreted as the difference between the objects a and b is
greater or equal than the difference between the objects c and d (a ,b ,c, d, e element of
A). For example, this could be the preference-interval on a set of drinks (a: beer, b: wine,
c: coffee and d: tea). Then ab : cd means that my preference to beer over wine is equal or
greater than my preference to coffee over tea.

Axiom: Axioms are conditions or basic assumptions of reality. Axioms are

mostly empirical, but technical ones are also possible. Axioms formulate certain
empirical properties. The goal in software measurement is to figure out empirical laws
about software development, software complexity, software maintainability, etc. The
discovery of qualitative laws of software quality and software development is another
goal of the formulation of axioms in the area of software measurement. Further goals of
formulating axioms are to get a more precise terminology in the area of software
measurement [Ref 16].

Binary Operation versus Concatenation Operation: Binary and concatenation

operations are used as synonyms. The difference is the kind of the combination of the
both objects a, b element of A to a° b, where A is a set of objects, like masses or flow
graphs. Concatenation operations mostly mean to link two objects, for example, in a
sequence [Ref 16].

Cohesion: Cohesion (alias strength) is a measure of the strength of fundamental

association of processing activities (normally within a single module) [Ref 16]. Also
represents modules that perform functions independently.

Complexity: The degree of complication of a system or system component

determined by such factors as the number and intricacy of interfaces, the number and

148

intricacy of conditional branches, the degree of nesting, the types of data structures, and
other system characteristics. For the definition of complexity of a program or software
system, we use the empirical relational systems related to a measure. Using measurement
theoretic axioms a model of complexity behind a measure can be characterized [Ref. 16].

Complexity Measure: Complexity measures are a major term in the area of

software measurement. However, we think it is misleading because the use of a measure
depends on its empirical relation. So, the Measures of McCabe, for example, can be used
as complexity measures, maintainability or testability measures. It depends on the
empirical relational systems under considerations [Ref 16].

Cyclomatic Complexity: In his seminal paper McCabe [Ref. 7] derived from the

cyclomatic number the term cyclomatic complexity: The overall strategy will be to
measure the complexity of a program by computing the number of linearly independent
paths v(G), control the "size" of programs by setting an upper limit to v(G) (instead of
using just physical size), and use the cyclomatic complexity as the basis for a testing
methodology [Ref 16].

Dataflow graph: A dataflow graph as opposed to flow graph or control flow

graph the relationships between the data in a program [Ref 16].

Desirable Properties: Many authors formulated properties for software

measures. Some authors denote these properties as desirable properties. The requirement
of these properties is based on experiences, on results of experiments, on axiom systems,
or on theoretical assumptions. The reason for formulating properties of software
measures is to provide a standard of software measures. Many authors assume that their
requirements reflect properties of reality in an acceptable way. They also use the desired
properties to characterize their own proposed measures [Ref 16].

Empirical: Perceptions originating in or based on observation or experience

<empirical data>; relying on experience or observation alone often without due regard
for system and theory [Ref 8].

Empirical Conditions: Empirical conditions can be seen as an idealization of

empirical facts. We call these empirical conditions, axioms as well. We use the term
empirical conditions and axioms as synonyms. Furthermore, we use the terms formal and
numerical conditions as synonyms. Very often, we emphasize the translation of
numerical conditions to empirical conditions. The advantage of this translation is the easy
interpretation of numbers. Very often, many numerical conditions only have one
empirical interpretation [Ref. 16].

Empirical Law: If hypotheses of reality are validated or confirmed by many

carefully designed experiments then we can call it an empirical law. For example, it is a
hypothesis that adding statements increases cost of maintenance. If experiments, carefully
designed, confirm the hypothesis, then it can become an empirical law. Important is to
notice that empirical laws cannot be proven [Ref. 16].

149

Expanded File: The expanded file is located in a <<Temp>> subdirectory of the
“version” directory. This file is code generated by CAPS, representing the system as a
flattened hierarchy without composite operators, a flattened model of the source
file/code.

Flow graph: A flow graph is a directed graph and it is the representation of the

control flow of a program. It can be described by the quadruple G=(E, N, s, t), where E is
the set of edges, N the set of nodes, s the start-node and t the exit-node with s, t element
of N. The nodes are connected by edges.

Homomorphism: A homomorphism is a mapping from the empirical relational

system to the formal relational system, which preserves all relations and structures
between the considered objects [Ref. 16].

Hybrid-Measure: A hybrid-measure is a combination of two or more single

measures to one measure. As a combination operator the + or * is used. However, single
measures cannot be combined arbitrarily, important conditions of measurement theory
have to be considered [Ref. 16].

Injective: One-to-one, mapping and injective are used as synonyms. A function

f: A à B, is injective if for every () ()1 2 1 2 1 2, :a a A f a f a a a∈ = ⇒ = ; elements of A
with the same image must be equal.

Interval Scale: An interval scale type is defined by the admissible

transformation: g(x) = ax + b, a>0. The interval scale can be described by an algebraic
difference structure (See the term algebraic difference structure). Interval scales do not
play an important role in the software measurement area.

Intuitive Condition: Intuitive conditions, empirical conditions, and axioms are

treated as synonyms. Empirical conditions can be falsified by observation. An example
is: Program A is more difficult to maintain than Program B, can be shown to be false.

Lines-of-Code (LOC): There exist many definitions of a line of code. One of the
definitions is as follows: A line-of-code is any line of program text that is not a comment
or blank line, regardless of the number of statements or fragments of statements on the
line. They specifically include all lines containing program headers, declarations, and
executable and non executable statements [Ref. 16].

Mapping: In many mathematical and non-mathematical situations every element

of an output set is assigned to a unique object of another set (not necessarily a different
set). For example, every car has a unique license plate; every U.S. citizen has a name and
a unique Social Security Number. In the measurement area, a measure is defined as a
mapping from empirical objects to numerical objects under the condition of a
homomorphism [Ref. 16].

150

Measure: A measure µ is a homomorphic mapping µ: A à B, where A are
empirical objects, and à denotes a mapping and B is the set of real numbers [Ref. 16].

Measurement: Measurement is the process of empirical and objective

assignment of numbers to the properties of objects and events in the real world in such a
way to describe them [Ref. 16].

Model: The everyday meaning of the word model is defined in the dictionary in

two ways. A model may be an object of imitation, such as a person who poses for artists,
a role model, or some exemplar of excellence. A model may also be a representation. In
this sense, a model may be a design for a new project; a template or prototype; a mold; a
drawing; something that resembles something else. A model is an intentional
arrangement of a portion of reality (the medium) to represent another portion of reality
(the subject) such that in certain ways the model behaves like the subject; the part(s), the
set(s) of details, and the abstractions of the subject that the model represents are called
the viewpoint of the model; the set of ways in which the model is intended to behave like
the subject is called the purpose of the model. We use models for programs written in
imperative languages, software systems, object-oriented programs, etc. We also use the
term qualitative model behind a measure. It is our view that behind every measure a
qualitative model is hidden, which can be described by empirical conditions or axioms
[Ref. 16].

Modularity: Modularity is the property of a system that has been decomposed

into a set of cohesive and loosely coupled modules [Ref.16].

Module: From our measurement view a module is a program unit that can

include definitions of types, objects, and subprograms that may be accessed by other
program units. In our view a module is considered to be a logical entity of significance in
a software design - for example, a package, function, procedure, include file, data
structure template, etc. We define a module from the software measurement perspective
[Ref 16].

Nominal Scale: A nominal scale type is defined by a one-to-one transformation.

Examples are license plates of cars. There is an injective relationship. For example, a car
having a plate number: BNL-920 can change that plate to BNL-921 if and only if no
other car with that plate exists [Ref. 16].

Ordinal Scale: An ordinal scale type is defined by the admissible

transformation: strictly monotonic increasing function. It is the basis of software
measurement [Ref. 16].

Ratio Scale: A ratio scale type is defined by the admissible transformation g(x) =

ax, with a>0 [Ref. 16]. It allows representation in degrees of difference, such as twice as
large.

151

Scale: Scales are defined by a homomorphism [Ref 16]. Something graduated
especially when used as a measure or rule: as a series of marks or points at known
intervals used to measure distances; a graduated series or scheme of rank or order <a
scale of taxation>; a proportion between two sets of dimensions (as between those of a
drawing and its original); a distinctive relative size, extent, or degree <projects done on a
large scale>. [Ref. 8]

Scale Types: Scale types are defined by admissible transformations. For

example, the ratio scale is defined: g(x)=ax, a>0 [Ref.16]. The scale types: nominal,
ordinal, interval, ratio and absolute are, themselves, represented on an ordinal scale.

Software: Software comprises not just code in machine-readable form, but also

all the documentation that is an intrinsic component of every project. Thus software
includes the specification document, the design document, legal and accounting
documents of all kinds, the software project management plan and other management
documents, as well as all types of manuals [Ref. 16].

Software Engineering: The term software engineering was coined at the NATO

conference in Garmisch-Partenkirchen in 1968. Since that time, there has been
considerable discussion over whether software development is an engineering discipline,
and the nature of software engineering itself. Mary Shaw suggests that it is not yet a true
engineering discipline, but it has the potential to become one. While most of the
discussion has been in academia, we have seen a steady acceptance of results by industry
from the research community (e.g., formal methods, advanced design and programming
languages). These results have contributed to the advances made in and the discipline of
software engineering. From IEEE, software engineering is defined as: The application of
a systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software [Ref. 16].

Software Measure: A software measure is defined as a rule by which, a given,

software related product can be quantified [Ref. 16].

Software Measurement: Software measurement is an essential component of

mature software technology. It supports quality as well as project management. As far as
quality management is concerned, measurement can help investigate software related
phenomena and thus contribute to building better software product, process and quality
models. As far as project management is concerned, measurement can help state software
requirements unambiguously, assess their proper implementation throughout the software
project, and achieve convincing product certification. The measurement goal of interest
determines which measures are appropriate. Over the years, several 'top-down'
measurement approaches for deriving measures from goals have been proposed. For
example, Basili et al. define software measurement as: a technique or method that applies
software measures to a (class of) software engineering object(s) to achieve a predefined
goal. Such goals of measurement vary along five characteristics: what software
engineering objects are being measured, why they are being measured, who is interested

152

in these measurements, which of their properties are being measured, and in what
environment they are being measured [Ref. 16].

Source Code: The written program in any programming language. We do not

use a model of the program [Ref. 16]. In PSDL it is the code that can found in the source
file.

Source File: The source file is where the source code can be found. The original

system diagram drawn by the user generates the source file. The source file can be
found in the “version” directory, which is located under the “root” directory.

Validation of a Software Measure: From IEEE, the term measure validation is

defined as: The act or process of ensuring that a metric correctly predicts or assesses a
quality factor [Ref. 16].

153

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Prof. Luqi
Naval Postgraduate School
Code CS/Lq
Monterey, California

4. Prof. Valdis Berzins

Naval Postgraduate School
Code CS/Be
Monterey, California

5. Prof. Man-Tak Shing

Naval Postgraduate School
Code CS/Sh
Monterey, California

6. Major Michael R. Murrah

Naval Postgraduate School
Code CS/Mu
Monterey, California

7. Major Joseph P. Dupont

Ft. Leavenworth, Kansas

